
© Copyright James Siddle 2009

An Interactive Pattern Story about

Remote Object Invocation
 James Siddle

Independent
www.jamessiddle.net

jim@jamessiddle.net

ABSTRACT

This paper presents an interactive pattern story about remote

object invocation, applying lessons learned from previous efforts

to write interactive pattern stories, and combining new story

content with a revised format that allows the exploration of

pattern based designs for learning. The paper presents further

lessons learned from the process of writing the new story.

Categories and Subject Descriptors

D.2.11 [Software Architectures]: Patterns (e.g., client/server,

pipeline, blackboard), and I.2.6 [Learning]: Concept learning

General Terms

Documentation, Design, Experimentation, Human Factors,

Theory.

Keywords

Patterns, pattern stories, interactive fiction, design, learning.

1. INTRODUCTION
This paper presents an interactive pattern story about remote

object invocation, and builds on ideas previously presented in

“Choose Your Own Architecture” - Interactive Pattern

Storytelling [5]. The paper, workshopped at EuroPLoP 2008,

proposed that pattern stories can be made more educational and

engaging by introducing interactivity such as that found in

“Choose Your Own Adventure” [4] books.

Here, an interactive story about remote object invocation is

presented. This story applies lessons learned from previous efforts

to write interactive pattern stories, combining new story content

with a revised format for allowing the exploration of pattern based

designs for learning. The goal of this paper is to test this revised

format and new content to understand the level of engagement and

educational benefits of the form.

After describing the intended audience, a summary of the concept

of interactive pattern stories is given, along with a description of

the key features of the format that is being used in this paper. The

main body of the paper is the interactive story itself, which is

preceded by a guide for the reader. Several lessons learned are

then presented, based on the experience of writing the story. The

paper closes with a map of the interactive story and thumbnail

descriptions of the patterns used in the stories, which can be

found in the Appendices.

2. INTENDED AUDIENCE
Any software professional may learn something from the story

presented in this paper, though early career professionals may find

the story particularly useful. Pattern authors, practitioners, and

theorists may also find the story of interest.

3. INTERACTIVE PATTERN STORIES
An interactive pattern story is a combination of a pattern story and

interactive fiction.

A pattern story is a narrative that describes the application of

patterns to solve a complex problem, for example in “Pattern

Oriented Software Architecture: Volume 5, On Patterns and

Pattern Languages” [3] the story of a request handling

framework is told through patterns. A pattern story is not meant to

be taken literally, rather it is a device used to communicate design

through patterns.

Interactive fiction is a form of narrative typically told in second

person, where the reader controls the direction of the story.

Arguably the most well known examples of interactive fiction are

children‟s “Choose Your Own Adventure” books, which tell

adventure stories with many possible outcomes.

The benefit of presenting design narratives as a pattern stories is

that they provide a concrete example of the application of

patterns, in context. This grounds the design in reality, and

provides an entry point for readers to understand both the pattern

and the context in which it applies.

Interactive pattern stories, therefore, are design narratives where

the reader controls the direction of the story. In addition to

providing a concrete example of the application of patterns,

interactive pattern stories allow the reader to explore concrete

consequences of less optimal choices. They are considered to be

an engaging and educational means of exploring design.

Alternative presentations of design choices could include

interactive pattern sequences – ordered lists of patterns known to

solve a given problem, but without the real-world scenario - or

© Copyright James Siddle 2009

As an application developer I can

develop and deploy remote objects

to receive requests and return

responses or errors to application

clients, via well defined, message

based interfaces.

US1

As an application developer, I can

add steps to the processing of

messages during the invocation of

remote objects which can be called

via well defined interfaces

US2

simply pattern languages. The difference is the concrete, real-

world scenario that grounds the design narrative and provides an

entry point for the reader.

4. FORMAT
The story presented in this paper follows a particular format,

based on lessons learned from previous attempts at writing

interactive pattern stories. The key features of the format are:

Requirement fulfilment – the story is about fulfilling requirements,

both functional and non-functional. These are presented at the

start of the story and it is up to the reader to fulfil the

requirements.

Tree structure with decision points – the story presented in this

paper branches out from a single starting point (step 1). Different

branches represent different decisions made by the reader in order

to fulfil functional requirements.

Consequences in terms of non-functional requirements – the aim

of the story presented here is to give the reader insight into the

effect of their design choices on non-functional requirements. So

each decision the reader makes has consequences. These

consequences are described in terms of the non-functional

requirements introduced to the reader in Step 1.

Multiple endings – the story has three endings; one good, one bad,

one neutral. This configuration of endings is chosen so to

distinguish a small number of endings as significant and to give

the reader something to aim for in their reading.

Small selection of patterns – only four patterns are discussed in

any detail, to keep the scope of the story manageable. The patterns

are summarised in Appendix B. Note also that the patterns are

typically used as the embodiment of good design practice, and are

denoted using capitals throughout the text.

Supporting text with common narrative – previous attempts at

creating interactive pattern stories have resulted in extensive

duplication of prose, so common narrative sections are captured in

a section at the end of the story, and are summarised in the main

flow of the story to keep interactive story text concise.

Main path – the story presented here has a „main path‟ where

patterns are applied to solve the problems presented to the reader.

The other paths are variations of that main path, introduced to

explore alternative choices. The main path is presented first, from

steps 1 to 6. A main „negative‟ path – where the design choices

are less than optimal - follows from step 7, followed by a number

of other variations. To get the most from the story, the reader may

wish to read the main path first, and then explore various

alternative paths to explore the different decisions and

consequences.

5. READER GUIDANCE
To read the story presented in this paper, simply start reading at

step 1 and follow the instructions as they appear. At certain stages

in the narrative you will be presented with decisions to make –

simply choose a path and turn to the associated step. When you

reach an ending, go back to the beginning and try a different

route.

Try exploring all possible designs, including positive or negative

design paths. Try to read from the beginning to the end, take time

to reflect on the story, then go back to the beginning and try a

different path to see how things might have turned out differently.

When you come across a pattern name such as TEMPLATE

METHOD, remember that you can find a short „thumbnail‟

summary and reference in Appendix B – Pattern Thumbnails. You

may also be referred to supporting information, which can be

found in a sub-section following the main body of the story.

You‟ll be presented with several requirements at step 1; note that

these are kept simple for the sake of brevity.

The only other things you need to know are that the system is

being developed in an Object Oriented language such as Java, and

(as general back story) will be used for an online supermarket.

Finally, you might want to keep your eyes open for the occasional

surprise along the way...

6. THE STORY

6.1 Step 1
You are developing a framework to handle the synchronous

invocation of remote objects. You are faced with several

requirements to fulfil, and must decide how to fulfil them. These

requirements are summarised on cards in figures and described

further below. Functional requirements are captured as user

stories (Figure 1); non-functional requirements as „ilities‟ [1]

(Figure 2).

Figure 1 - Functional Requirements

© Copyright James Siddle 2009

Maintainability – the need for long

term maintenance is foreseen, so

it’s important that any code is easy

to maintain

Q3

Performance – the remote objects

in question will be called under

service level agreements indicating

minimum response times, so timely

responses are required

Q2

Flexibility – changes to remote

object implementations are

expected, along with new

interfaces, and changes to network

level messages. So the solution

must be flexible

Q1

First, your system must be able to receive and process messages

for remote objects developed by application developers (US1).

Your system must translate the messages into calls onto the

remote objects, and then create response messages from any return

values or output parameters. Exceptions may be encountered

when calling remote objects, so error handling should also be

provided.

Several kinds of remote object are required, starting with objects

providing stock availability and customer loyalty information

respectively.

Each object must be able to receive messages for one or more

remote interfaces, which are described in a generic way (see

INTERFACE DESCRIPTION pattern [7]). The operations and

parameters of these interfaces will be well defined, however their

network level representations may vary and new interfaces may be

needed over time. Messages that target remote objects will be sent

to discrete network endpoints.

Interfaces to support the aforementioned remote objects are

expected – specifically for querying stock levels and customer

loyalty information. Also several management interfaces are

required for enabling and disabling logging, and for querying

runtime statistics such as response times or number of queries

made.

Your system must also be extensible, so that application

developers can add new processing steps to remote object

invocations (US2); this extends to introducing extra processing

steps to pre-existing remote objects. Message encryption is an

expected addition, because of the importance of ensuring

customer confidentiality. Beyond functional requirements,

flexibility, performance, and maintainability are the key non-

functional requirements your system should fulfil.

 Flexibility is needed because remote object implementations

may change or new remote interfaces may be added to

accommodate new customer requirements, and network level

representations of existing interfaces may change for

example to support new technologies.

 Performance is a crucial consideration because the remote

objects in your system may be called by third parties under

service level agreements, so fast response times are desired.

 Maintainability is required because the system is seen as a

long term investment so should be easy to maintain during its

lifetime.

Figure 3 provides an overview of the baseline architecture of the

required system.

Now continue at step 2, below…

Figure 2 - Non-functional Requirements

© Copyright James Siddle 2009

Figure 3 - Baseline Architecture

6.2 Step 2
The first decision you are faced with is how to map from remote

interfaces and network messages to instances of objects in your

system.

As a starting point, you expect that stock availability and loyalty

card objects will provide interfaces providing access to stock

availability and loyalty information, respectively. You also expect

both objects to offer one or more management interfaces, starting

with accessing runtime statistics.

Noting that each remote object has a unique identity, two

alternatives come to mind.

First, you can give each remote object its own endpoint. Messages

for each remote object will be sent to its unique endpoint, and

each endpoint will be backed with code that ensures the

associated remote object is called correctly.

Second, you can provide a single endpoint to receive messages for

all remote objects in your system, and then introduce an

additional layer of logic to dispatch messages to objects.

If you provide remote objects with their own

endpoint, turn to Step 7.

If you provide a single endpoint, turn to Step 3.

6.3 Step 3
You decide to expose a single endpoint to receive all messages,

and then have an additional layer of logic for dispatching to

remote objects.

You create INVOKERs to encapsulate remote object dispatch

functionality. INVOKERs are responsible for decoding messages,

discovering remote objects to call, encoding responses, and

handling errors. One INVOKER per remote interface seems about

right to you. Upon receiving a message, your system discovers an

invoker by partially decoding the message to discover which

remote interface is targeted. Your system then looks up an

appropriate INVOKER object from a local cache, then passes the

message to the INVOKER to process.

Specifically, INVOKERs for stock availability, loyalty

information, and runtime statistics are needed to support required

interfaces.

On receiving a message, INVOKERs discover which remote

object to call by further decoding the message to discover the

remote object identity. INVOKERs in your system know how to

handle messages for a particular interface, and retain a store of

remote objects that implement the interface. Finding the remote

object to call means searching the store of remote objects for one

that has the object identity given in the message.

To call the remote object, the INVOKER performs further

message decoding to discover operation and parameter values.

After calling the remote object, the INVOKER encodes a response

and returns it; your system then passes the message back to the

network to work its way back to the calling client. Exceptions in

remote objects are handled similarly - your INVOKERs create

response messages that describe the error that occurred.

Figure 4 shows how your system behaves.

Your design has excellent flexibility and maintainability because

message dispatching is well encapsulated. Application developers

can easily add new message representations and interfaces, for

example to give access to personnel databases or to enabling and

disabling logging. Developers will find it easier to fix bugs

because changes will be isolated to a small number of classes.

Your design also makes good use of network resources because

only a single network endpoint is used. This improves

performance of applications that include the remote objects by

reducing the impact on memory. However you are concerned that

it may become a bottleneck which could potentially impact

service level agreements offered by applications.

Next, you must decide how to handle message encoding and

decoding. The interfaces handled by your INVOKERs share

common message elements and parameter types; these are

represented in your system as non-primitive types. Both stock

availability and loyalty information services, for example,

represent product information in a common, multi-field packet

format.

However each remote interface is unique, so you must determine

how to encode and decode to and from these types for each

interface.

If you create shared classes for encoding and

decoding, turn to Step 4.

If you inline encode/decode functionality in your

INVOKERs, turn to Step 12.

© Copyright James Siddle 2009

Figure 4 - INVOKER diagram

6.4 Step 4
You decide to encapsulate encoding and decoding of complex

types into MARSHALLER classes.

MARSHALLER classes encapsulate the encoding and decoding

of complex types such as the product information packet, and are

called from your INVOKERs whenever a message is received or a

response is ready to be transmitted. Using MARSHALLERs

improves flexibility and maintainability, though there is a risk of

an adverse effect on performance. See “Encoding and decoding

with MARSHALLERs” for a detailed description and assessment

of consequences.

You must now decide how to make your system extensible, so

that extra processing - such as message encryption - can be

introduced. You can introduce an extension interface to call from

your INVOKERs, where objects implementing the interface

provide additional processing steps; alternatively you can

introduce abstract methods in your INVOKER classes so that sub

classes can vary the processing that takes place.

If you add calls to an extension interface, turn

to Step 5.

If you add abstract methods for processing

additional steps, turn to Step 15.

6.5 Step 5
You decide to call an extension interface from your INVOKERS

and MARSHALLERS, using the INTERCEPTOR pattern.

The INTERCEPTOR pattern introduces calls to an extension

interface, via a dispatcher object. The interface is implemented by

classes to allow additional message processing steps - starting

with a class for encryption. This has an exceptional impact on the

flexibility of your system, but an undetermined impact on

maintainability and performance. See “Introducing

INTERCEPTOR” for a detailed description and assessment of

consequences.

You also notice that the introduction of calls to allow additional

processing steps is simplified by the encapsulation of dispatching,

encoding, and decoding into INVOKERs and MARSHALLERs;

which further supports maintainability because the risk of code

bloat is reduced.

Now turn to 6.

6.6 Step 6
Congratulations, your remote object invocation system is

complete.

You successfully implemented a mechanism for allowing

application developers to develop and deploy remote objects

accessible via multiple interfaces, and introduced an extensibility

mechanism for allowing developers to introduce extra processing

steps to remote object invocation.

Overall, you are pleased with your design. The flexibility is

exceptional – application developers can introduce new interfaces,

new network representations, and additional processing steps

easily. Your system also cleanly encapsulates different concerns,

so that maintenance of remote objects and additional processing

steps will be simple and have little impact. You are a little

concerned about the performance of applications that include

remote objects deployed in your system, though you have some

mitigation strategies should this be an issue.

Great job!

The End

6.7 Step 7
You decide to create distinct endpoints, one for each of remote

object in your system.

You back your endpoints with classes for processing remote calls

for the different types of object. Each of these message processing

classes is associated with one type of remote object, and during

initialisation is associated with a specific remote object. This

ensures that messages will be always dispatched to the right object

in your system. You provide encoding, decoding, and error

handling functionality for each object type.

On receiving a message, each message handling class decodes the

message to discover the operation and parameters for the remote

call, and then passes the invocation on to the associated instance

of the remote object. Following the call to the remote object, any

return value, output parameters, or error message are encoded

then returned to the calling client.

Figure 5 shows the behaviour of your remote object handling

classes.

Your design ensures good response times for requests to remote

objects because the number of processing layers between the

network and the targeted remote object is limited. Unfortunately

this is at the cost of excessive use of network resources - every

remote object requires a distinct network endpoint which may be a

serious limitation when scaling your system. So your design both

supports and works against the delivery of service level

agreements.

© Copyright James Siddle 2009

Figure 5 - Handler type and endpoint per remote object

Changes to network endpoints and addresses can be costly and

fiddly on both client and server, so application developers may

find your system inflexible. Further, the need for a distinct class

for each remote object type may result in duplication of encoding,

decoding, and error handling, so introducing new network

representations or remote interfaces may be costly and thus off-

putting to application developers. Such duplication similarly

implies application developers will find maintenance more

difficult because bugs may be repeated many times.

Now you need to determine how your remote object handlers will

deal with encoding and decoding. The interfaces on which remote

objects will be called share common message elements and

parameter types, which are represented in your system as non-

primitive types. However each remote interface is unique and each

distinct remote object type may require specific processing. You

must determine how to encode and decode to and from these types

in your remote object handlers.

If you create shared classes for encoding and

decoding, turn to 16.

If you inline encoding and decoding in your

remote object types, turn to 8.

6.8 Step 8
You decide to create inline encoding and decoding in your remote

object handlers. See “Inline encoding and decoding” for a detailed

description.

Unfortunately application developers will find your design quite

inflexible because the introduction of each new remote object type

will require a complete set of new encode and decode

functionality to be written. Similarly, variations in network

representation and the introduction of new interfaces will require

extensive code changes to remote object handlers, further

impacting application developers.

However you think your system will perform well, supporting the

delivery of service level agreements because messages received

for remote object types need only be decoded to obtain the

parameters required by the specific remote object type. Further,

performance tweaks and enhancements can be applied specifically

for each remote object type. Although impacted negatively

overall, application developers may find the ability to tweak both

network and internal representations of complex types for each

remote object type quite useful.

You must now decide how to make your system extensible. You

can introduce an extension interface to call, where objects

implementing the interface provide additional processing steps;

alternatively you can introduce abstract methods in your remote

object handlers so that sub classes can vary the processing that

takes place.

If you add calls to an extension interface, turn

to 19

If you add calls to abstract methods at key

processing points, turn to 9

6.9 Step 9
You decide to extend your remote object handlers to create

TEMPLATE METHODS that call out to abstract methods which

can be implemented by subclasses.

Using TEMPLATE METHOD for extensibility improves

flexibility, though only statically, and not easily when more than

one additional processing step is required. See “Extensibility with

TEMPLATE METHOD?” for a detailed description and

assessment of consequences.

Reviewing your extensibility mechanism, you discover a further

negative consequence of your decisions. Where application

developers wish to introduce additional processing steps, every

remote object handler must be updated; this is compounded by the

fact that there is no common code shared between remote object

types – a result of in-lining your encode/decode functionality.

Application developers will find further challenges with

maintenance because of the many sub-classes introduced by

TEMPLATE METHOD, and as with inline encoding and

decoding, bug fixes to additional processing steps may need to be

duplicated for each remote object type.

Now turn to 10

6.10 Step 10
Congratulations, your remote object invocation system is

complete.

Unfortunately, you think you may have made a mistake –

application developers will find the flexibility and maintainability

of your system poor.

Introducing new remote objects will be time consuming because

of fiddly network configuration. The lack of any encode/decode

encapsulation means that changes to network representations, new

interfaces, or new remote objects all require extensive coding.

Your TEMPLATE METHOD may allow some additional

processing steps, but only statically.

The use of distinct remote object handlers and dedicated

encode/decode functionality may mean bug fixes can be applied to

each remote object, but maintenance overall will be hard because

of duplication caused by the lack of any encode/decode cohesion,

and because of the many layers of inheritance needed for

additional processing steps.

© Copyright James Siddle 2009

At least the performance of the your system should be reasonable

because of dedicated processing possible for each remote object;

though thinking about it you realise that the poor flexibility and

maintainability may soon render this benefit meaningless because

application developers will avoid using your framework.

The End

6.11 Step 11
You step through the shimmering orange portal, and find yourself

standing on a small, slowly moving platform1.

You are surrounded by translucent walls, through which you see

the occasional indiscernible shape. Below the platform you see

only darkness.

The platform appears to be floating of its own accord, perhaps

powered by the beam of light that inexplicably appears from

around a nearby corner. The platform is travelling along the beam

of light towards the corner, and you can only guess what lies

there.

The portal you jumped through appears blue from this side, and is

moving gradually away from you. Soon it will be beyond reach.

If you jump back through the portal, turn to 24

If you stay on the platform, turn to 21

6.12 Step 12
You decide to create inline encoding and decoding functionality

in your INVOKER classes.

This means that each INVOKER is responsible for decoding

messages that it receives, and encoding response messages before

transmitting them to clients. Unfortunately, this impacts the

maintainability of your system negatively - see “Inline encoding

and decoding” for a detailed description and consequences. This

design also makes it harder for application developers to maintain

applications because the introduction of a new network

representation will require the creation of an entirely new

INVOKER. However you are consoled by the fact that developers

can tweak the performance of each INVOKER because of the

dedicated encode/decode functionality, supporting successful

provision of service level agreements.

You must now decide how to make your system extensible. You

can introduce an extension interface to call, where objects

implementing the interface provide additional processing steps;

alternatively you can introduce abstract methods in your

INVOKER classes so that sub classes can vary the processing that

takes place.

If you decide to add call outs to an extension

interface, turn to 13

If you decide to add calls to abstract methods,

turn to 14

6.13 Step 13
You decide to call an extension interface from your INVOKERS,

using the INTERCEPTOR pattern.

1 If you‟re confused by this, see [6]

The INTERCEPTOR pattern introduces calls to an extension

interface, via a dispatcher object. The interface is implemented by

objects to allow additional message processing steps. This will

provide exceptional flexibility to application developers, but

you‟re not sure how they will find maintainability and

performance. See “Introducing INTERCEPTOR” for a detailed

description and assessment of consequences.

The impact of inlining encode and decode functionality in your

INVOKER also means that application developers must add new

processing steps related to encoding and decoding to each

INVOKER separately. This takes extra effort and further reduces

the cohesiveness and thus the maintainability of the INVOKER.

Now turn to 20.

6.14 Step 14
You decide to update your INVOKERs with extension points by

adding TEMPLATE METHODs.

Using TEMPLATE METHOD for extensibility improves

flexibility for application developers, though only statically, and

not easily when more than one additional processing step is

required. See “Extensibility with TEMPLATE METHOD?” for a

detailed description and assessment of consequences.

You recognise a further impact of inlining encode and decode

functionality in your INVOKER – application developers must

apply any additional processing steps related to encoding and

decoding to each INVOKER separately. In addition to the extra

effort, this further reduces the cohesiveness of the INVOKER,

giving application developers a maintainability headache.

Positively though, you see that the limited number of INVOKERs

- one per remote interface - may have avoided the need for lots of

new subclasses for remote object types where additional

processing steps would have been required, meaning that

application developers will find maintenance a little easier.

Now turn to 20

6.15 Step 15
You decide to update your INVOKERs and MARSHALLERs

with extension points by adding TEMPLATE METHODs.

Using TEMPLATE METHOD for extensibility improves

flexibility for application developers, though only statically, and

not easily when more than one additional processing step is

required. See “Extensibility with TEMPLATE METHOD” for a

detailed description and assessment of consequences.

Reflecting on your design to this point, you see how the

encapsulation of interface and encode/decode functionality of

your INVOKERs and MARSHALLERs drastically reduced the

number of changes needed to introduce extension points during

development. You also see that the limited number of INVOKERs

- one per remote interface - may have avoided the need for lots of

new subclasses for remote object types, easing maintenance for

application developers.

Now turn to 20

© Copyright James Siddle 2009

6.16 Step 16
You create MARSHALLER classes to perform encoding and

decoding.

MARSHALLER classes encapsulate the encoding and decoding

of complex types, and are called from your remote object handlers

whenever a message is received or a response is ready to be

transmitted. Using MARSHALLERs provides flexibility and

maintainability to application developers, though there is a risk of

an adverse effect on performance. See “Encoding and decoding

with MARSHALLERs” for a detailed description and assessment

of consequences.

You also realise that even though MARSHALLERs help to avoid

duplication, application developers will still require some

duplication of calls to the classes in remote object types because

no other commonalities, for example at the interface level, have

been encapsulated.

You must now decide how to make your system extensible. You

can introduce an extension interface to call, where objects

implementing the interface provide additional processing steps;

alternatively you can introduce abstract methods in your remote

object handlers so that sub classes can vary the processing that

takes place.

If you add call outs to an extension interface,

turn to 17

If you add calls to abstract methods, turn to 18

6.17 Step 17
You decide to call an extension interface from your remote object

handlers and MARSHALLERs, using the INTERCEPTOR

pattern.

The INTERCEPTOR pattern introduces calls to an extension

interface, via a dispatcher object. The interface is implemented by

classes to allow additional message processing steps. This will

provide excellent flexibility to application developers, though you

aren't sure how they will find maintainability and performance.

See “Introducing INTERCEPTOR” for a detailed description and

assessment of consequences.

In applying the pattern, you come to see the lack of flexibility

caused by your decisions up to this point. Application developers

must modify the handlers of each remote object type to integrate

INTERCEPTOR calls. The duplication of code between remote

object types will increase the time and effort required to introduce

the extension points, and make the changes more error prone, so

while the flexibility of your system does increase, it is costly.

However your decision to encapsulate encoding and decoding

functionality into MARSHALLERs means that extension points

related to encoding and decoding can be easily introduced, so it's

not all bad.

Now turn to 20

6.18 Step 18
You decide to update your remote object handlers and marshallers

to add extension points via TEMPLATE METHODs.

Using TEMPLATE METHOD for extensibility provides

flexibility to application developers, though only statically, and

not easily when more than one additional processing step is

required. See “Extensibility with TEMPLATE METHOD?” for a

detailed description and assessment of consequences.

You can also see that the encapsulation of encode/decode

functionality provided via MARSHALLERs is starting to reap

benefits because some extension points are now shared between

remote object handlers, so the introduction of additional

processing steps by application developers requires fewer changes

as a result. However application developers must sub-class remote

object handlers and marshallers to introduce additional processing

steps, and these will be difficult to maintain. But again, it would

be even worse if you hadn't encapsulated encoding and decoding

in MARSHALLERs.

Now turn to 20

6.19 Step 19
You decide to call an extension interface from your remote object

handlers, using the INTERCEPTOR pattern.

The INTERCEPTOR pattern introduces calls to an extension

interface, via a dispatcher object. The interface is implemented by

classes to allow additional message processing steps. This

provides great flexibility to application developers, though you

aren't sure about the impact on application maintainability and

performance. See “Introducing INTERCEPTOR” for a detailed

description and assessment of consequences.

In applying the pattern, you come to see the lack of flexibility

caused by your decisions up to this point. Application developers

must modify handlers for each remote object type to integrate

INTERCEPTOR calls. This lack of maintainability is further

compounded by the duplication of encoding and decoding code,

because there is no commonality at all in remote object handling.

The time and effort involved in making the changes, along with

the large amount of duplication involved, means that the changes

are also error prone, and will make applications using the

framework even less maintainable. So while application

developers will benefit from improved flexibility, they will now

suffer from poor maintainability.

Now turn to 20

6.20 Step 20
Congratulations, your remote object handling system is complete!

You are unsure whether to be happy or unhappy with your design.

It has both good points and bad points. Application developers

will find some flexibility, some maintainability, some good

performance characteristics. However you think there may have

been a more optimal design; a better balancing of the tradeoffs,

and you wonder what that might look like.

The End

6.21 Step 21
The platform proceeds slowly towards the corner2.

As you approach, you start to see a familiar orange flicker on the

walls. You get an odd feeling in the pit of your stomach.

2 If you‟re confused by this, see [6].

© Copyright James Siddle 2009

Rounding the corner, you realise with horror that the platform is

heading straight towards a flame-filled room. Turning back, you

start to move towards the portal, but it's too late - it is beyond

reach.

You look back towards the flame-filled room. All you can do is

watch as your fate approaches.

The End

6.22 Supporting Text
The following sections contain sections of text referred to in the

main body of the story.

6.22.1 Encoding and decoding with MARSHALLERs
“Each MARSHALLER is responsible for translating from a byte

stream to a particular complex type, and vice versa.

MARSHALLERs for higher level complex types make use of

MARSHALLERs for lower level types. Primitive types are

encoded directly into byte streams.

The concrete byte stream representation that the MARSHALLER

decodes to and from is determined by the remote interfaces that

the type is required for; in your system XML is the chosen

representation.

You introduce MARSHALLERs classes for the common packet

structures that appear in interfaces; one example being a

MARSHALLER that encodes to and from the common product

information format. You update your classes to use the

MARSHALLERs, and where common complex types have the

same network representation in multiple interfaces, your classes

can use the same MARSHALLER.

Your design allows application developers to flexibly introduce

and vary message encoding and decoding, important because of

the variations in network representation and interface that are

foreseen. You can imagine that new interfaces for handling market

data will be introduced in the future, where use of the standard

product information format will be necessary. That said, you do

wonder if your design will cope with minor variations in network

representations for common complex types – the required

representation of product information may differ subtly between

different services; careful use of inheritance (such as through

TEMPLATE METHOD) may be enough to solve this problem.

Long term maintenance of encoding and decoding by application

developers should be fairly straightforward because of the clean

encapsulation introduced.

You're concerned about the potential impact on application

performance however; the additional layer of encoding and

decoding means that - similarly to variations in network level

representation - performance enhancements for particular

interfaces may be difficult to introduce.

Figure 6 provides an example of the „uses‟ relationships between

marshallers.”

Figure 6 - MARSHALLER diagram

6.22.2 Introducing INTERCEPTOR
“At each point where additional processing steps are needed, you

call a dispatcher to invoke any registered INTERCEPTORs that

may modify or augment message processing. Each

INTERCEPTOR implements an abstract interface that the

dispatcher calls for discrete processing steps, and receives a

context object - created by your message handling classes - that

allows queries and modifications to message processing state.

This means that additional processing steps can be easily added to

your system. Message content encryption – important for

customer confidentiality, for example, can be added by

introducing an INTERCEPTOR that is executed upon message

receipt, and before transmitting any response. This

INTERCEPTOR decrypts messages before your message handling

classes process them further, and encrypts response messages

before they are returned to the framework.

The flexibility of this design is exceptional - application

developers can introduce additional processing steps without

modifying existing code. The INTERCEPTOR pattern even

allows the dynamic introduction of processing steps at runtime.

Additional processing steps for auditing, message logging and

tracing, and possibly even reliability may be introduced as they

are needed for different remote objects in the supermarket system.

These additions may even be made at runtime, where service level

agreements exist.

Application developers will find that maintenance of their

additional steps is both helped and hindered - helped because

additional processing steps are cleanly encapsulated and loosely

coupled with the rest of the system, hindered because

INTERCEPTOR‟s complexity and abstract nature make it

difficult to understand. You are also concerned that application

performance may not be optimal because the runtime

characteristics of the system will depend on which

INTERCEPTORs are configured, though the fact that this is

entirely configurable alleviates your concerns to a degree.

Figure 7 shows the interactions between message handling classes

and interceptors.

© Copyright James Siddle 2009

Figure 7 - INTERCEPTOR diagram

6.22.3 Inline encoding and decoding
You ensure that every message handling class explicitly encodes

from and decodes to the complex types required by the target

remote object. Byte stream representations, as received in

incoming messages, are decoded into instances of complex types

in a form that is suitable for the remote object being called. Return

values and output parameters are transformed directly into byte

streams specific to the interface that the object was called on.

Similarly, exceptions are caught and encoded into byte streams

representing the error, which can be returned to the client.

Figure 8 shows two message handling classes with inline

encoding and decoding.

Sadly, this will make maintenance difficult for application

developers because the duplication of encode and decode

functionality means duplication of bugs, which will make fixes

costly. The distribution of encoding and decoding code will also

make it harder to identify the root cause of bugs, partly because of

poor cohesion, but also because of code bloat.

Figure 8 - Inline encoding and decoding

6.22.4 Extensibility with TEMPLATE METHOD?
You identify the points during message processing at which

additional processing steps may be required. For now, you decide

to add two extension points - one upon message receipt and one

prior to response message transmission. You apply the

TEMPLATE METHOD pattern, changing your message

processing classes into abstract types, and then introducing calls

to abstract methods at suitable points in your code to allow

extensions to be introduced in sub classes. You introduce a

subclass with empty implementations of the abstract methods to

be default, non-extended implementation. Extensions can be

introduced by sub-classing the abstract class and introducing new

processing steps in the abstract methods.

Figure 9 shows an example message handling class that provides

template methods for extension points.

The TEMPLATE METHODs provide flexibility to application

developers because new message processing steps can be

introduced. However there are two major limitations to this. First,

adding more than one processing step to a particular extension

point will be difficult, and will result in confusing code because of

multiple layers of inheritance. Second, the flexibility is static

rather than dynamic - the introduction of additional processing

steps will require a recompilation and redeployment of your

system. Application developers will find some help with

maintenance, because bug fixes to additional processing steps will

be isolated to sub-classes, though multiple levels of inheritance

counters this to some extent.

Figure 9 - TEMPLATE METHOD diagram

7. LESSONS LEARNED
The interactive story presented above is an experiment performed

to help identify an effective format for interactive pattern stories.

Whilst writing this paper, a number of lessons learned (over and

above those described in [5]) were discovered:

Interactive pattern stories with branches may have many repeating

sections because similar decisions with similar consequences

appear across different branches. This may be mitigated to some

degree by the use of a section containing common narrative

fragments.

Different styles of diagrams suit different narratives – previous

stories used class diagrams and code fragments, but the

interaction-like diagrams used here are considered to be a good

match to the interactive nature of network invocation.

© Copyright James Siddle 2009

Introducing an order into the presentation of story steps may help

readers to understand the different branches that appear3; here the

„good‟ steps were provided, followed by the „bad‟ (or less

optimal), followed by neutral steps.

Relating design decisions and consequences to concrete user

stories or use cases, stated in terms of actual users, ground the

narrative in reality and force the writer to make observations or

comments in a way that readers are more likely to relate to.

8. SUMMARY
This paper presented a new interactive pattern story about remote

object invocation, combining lessons learned from previous

writing efforts. A new, refined format was used to present the

story, which used the INVOKER, MARSHALLER,

INTERCEPTOR, and TEMPLATE METHOD patterns – and

several less optimal alternatives - to explore the design of remote

object handling systems. Several lessons learned were presented,

based on the experience of writing this paper.

9. ACKNOWLEDGMENTS
Thank you to Michael Stal for many useful and insightful

comments during the shepherding of this paper for PLoP 2009.

Thanks also to the „Architecture and Design‟ Workshop group at

PLoP 2009 for the many helpful comments.

10. APPENDICES

11. Appendix A – Interactive Story Map
Figure 10 - Interactive Story Map” (which appears at the end of

the paper) provides a full map of the routes through the interactive

story. The main „good‟ path that appears first is highlighted using

empty boxes, the neutral paths in grey boxes, and the main „bad‟

path in black filled boxes.

12. Appendix B – Pattern Thumbnails
The following pattern thumbnails are based on several

publications, including “Pattern-Oriented Software Architecture

Volume 4: A Pattern Language for Distributed Computing” [2],

and “Remoting Patterns : Foundations of Enterprise, Internet and

Realtime Distributed Object Middleware” [7]. Key phrases that

summarise the patterns are included below as quotations. Please

see the quoted publications for full descriptions.

12.1.1 INTERCEPTOR pattern
“It can be hard to anticipate how the behaviour of a framework

may need to be tailored for different environments or applications.

Features and attributes of an otherwise stable core set of services

may need adaptation or extension. Allow users to tailor a software

framework by registering out-of-band service extensions via

predefined callback interfaces, known as „interceptors‟, then let

the framework trigger these extensions automatically when

specific events occur.” [2]

3 Thank you to my PLoP 2009 shepherd, Michael Stal for this

useful suggestion.

12.1.2 INVOKER pattern
“When a client sends invocation data across the machine

boundary to the server side, the targeted remote object has to be

reached somehow. The simplest solution is let every remote object

be addressed over the network directly. But this solution does not

work for large numbers of remote objects...Provide an INVOKER

that accepts client invocations from REQUESTORS.

REQUESTORs send objects across the network, containing the

ID of the remote object, operation name, operation parameters, as

well as additional contextual information. The

INVOKER...dispatches the invocation with demarshaled

invocation parameters to the targeted remote object.” [7]

12.1.3 MARSHALLER pattern
“For remote invocations to work, invocation information has to be

transported over the network...Only byte streams are suitable as a

data format for transporting this information over the network.

Require each non-primitive type used within remote object

invocations to be serializable into a transport format that can be

transported over a network as a byte stream. Use compatible

MARSHALLERS on the client and server side that serialize

invocation information.” [7]

12.1.4 TEMPLATE METHOD pattern
“Where an object has a common core, but may vary in some

behavioural aspects, create a superclass that expresses the

common behavioural core then delegate execution of behavioural

variants to hook methods that are overridden by subclasses.” [2]

13. REFERENCES
[1] Bass, L., Clements, P., Kazman, R., Software Architecture

in Practice, 2nd Edition, Addison Wesley, 2003.

[2] Buschmann, F., Henney, K., Schmidt, D.C., Pattern-

Oriented Software Architecture Volume 4: A Pattern

Language for Distributed Computing, John Wiley and Sons,

2007

[3] Buschmann, F., Henney, K., Schmidt, D.C., Pattern-

Oriented Software Architecture Volume 5: On Patterns and

Pattern Languages, John Wiley and Sons, 2007

[4] Packard, E., Choose Your Own Adventure 1: The Cave of

Time, Bantam Books, 1979.

[5] Siddle, J., Choose Your Own Architecture - Interactive

Pattern Storytelling, EuroPLoP conference proceedings,

2008.

[6] Valve, Portal the video game,

http://en.wikipedia.org/wiki/Portal_(video_game), 24th

October 2009.

[7] Voelter, M., Kircher, M., Zdun, U., Remoting Patterns:

Foundations of Enterprise, Internet and Realtime

Distributed Object Middleware, Wiley Software Patterns

Series, 2005

http://en.wikipedia.org/wiki/Portal_(video_game)

© Copyright James Siddle 2009

Figure 10 - Interactive Story Map

