
“Choose Your Own Architecture” - Interactive
Pattern Storytelling

James Siddle1 and Maisie Platts2

1 Independent, jim@jamessiddle.net,
WWW home page: http://www.jamessiddle.net

2 Independent, maisie platts@yahoo.co.uk

WWW home page: http://maisieplatts.com/
c©James Siddle and Maisie Platts, 2009

Abstract. The concept of Interactive Pattern Stories is introduced as a
way to support software design education. An example interactive pat-
tern story is presented, along with benefits, liabilities, and applicability
of the approach. Key benefits include enabling readers to explore differ-
ent choices to design problems and to experience positive and negative
consequences of design choices, and the engaging game-like format. The
key liability is the complexity of the writing task. The main application
area is to education and learning.

1 Introduction

“You peer into the gloom to see dark, slimy walls with pools of water
on the stone floor in front of you. The air is cold and dank. You light
your lantern and step warily into the blackness. Cobwebs brush your face
and you hear the scurrying of tiny feet: rats most likely. You set off into
the cave. After a few yards you arrive at a junction. Will you turn west
(turn to 71) or east (turn to 278)?” - Step 1 of “The Warlock of Firetop
Mountain” [1]

This paper proposes the concept of interactive pattern stories, as a way of
supporting the exploration of pattern-based designs in an engaging, educational,
and fun way. The “Choose Your Own Adventure” [2] style of book is proposed
as a suitable basis for introducing interactivity into pattern stories.

An example interactive pattern story, presented below, is used to show the
benefits of this medium to software design education. The interactive story, based
on a previously published story, is interactive around design alternatives, il-
lustrates the consequences of different design choices, and allows exploration
pattern-based designs.

The rest of this paper is structured as follows. The target audience is intro-
duced, followed by an introduction to pattern and interactive fiction concepts.
The origin and structure of the interactive story is then described along with
the key benefits offered to software design education. Reader guidance provides
essential information to interactive story readers, then the interactive story itself



2. CONCEPTS

appears. Next, an analysis of story features, benefits, liabilities, and applicability
of the approach is presented. The paper closes with an overview of related and
further work, and conclusions.

1.1 Target Audience

Computer science students, software developers, and software architects will gain
insight into the application of patterns, choices available during software design,
and will learn several desirable and undesirable design choices related to request
handling. Patterns theorists and authors will learn how to combine interactive
fiction and pattern concepts to create interactive pattern stories for patterns-
based education. Technical writers may benefit from learning an interactive ap-
proach to describing the design and development of software through patterns.

2 Concepts

2.1 Patterns, Pattern Stories, Pattern Languages

A pattern [3] is a solution to a problem that occurs in a particular context,
captured in an easy to understand format. A pattern story [4] describes the
application of one or more patterns. Pattern stories can be derived from pattern
languages [3], which connect patterns together to provide guidance in solving
wider problems than is possible with individual patterns. A key feature of pattern
languages is that patterns are connected together via a shared context, where
the application of one pattern creates a context in which another pattern can be
applied.

To apply a pattern language, one follows the connections in the language to
build up a sequence [4] of patterns. Each pattern application solves one part
of the overall problem, after which the reader determines the next sub-problem
they want to tackle (the pattern texts help with this). The reader then follows a
connection from one of the patterns they have already applied, to solve the next
part of the overall problem. This continues until the reader’s overall problem has
been fully solved, or the pattern language is unable to help the reader further.

Note however that patterns and associated structures, concepts and ap-
proaches are not a silver bullet for designing software - for example a pattern
or pattern language may only cover part of the problem space for a given con-
text, leaving the designer with a partial solution. The quality of a design derived
from a pattern language is dependent on how extensive and rich the language
is. Additionally, effective use of patterns relies on the designer treating them
as design guidance rather than prescriptive solutions; the designer must use his
or her knowledge of the specific problem being faced to fill in the gaps in any
particular pattern.

2.2 “Choose Your Own Adventure” and Interactive Fiction

“Choose Your Own Adventure” [2] books are a form of children’s literature which
is interactive in nature. The reader typically starts at a single entry point which

c©James Siddle and Maisie Platts, 2009



3. INTERACTIVE PATTERN STORIES

describes the overall context for the story, then is presented with several de-
cisions each of which lead to further story, and further decision points, etc.
Eventually the reader will come to one of many endings, some good, others bad.
For an in-depth examination of interactive fiction see “Twisty Little Passages:
An Approach to Interactive Fiction” by Nick Montfort [5].

3 Interactive Pattern Stories

3.1 Origin of the Story

This paper presents an interactive story based heavily on a “request handling”
pattern story published in “Pattern-Oriented Software Architecture, Volume 5:
On Patterns and Pattern Languages” 3 [6]. In this story, a collection of patterns
are applied to create a framework for handling requests. Various problems are
posed, such as how to encapsulate or uniformly handle requests, and various
patterns are applied to solve the problems. This pattern story was originally
derived from the pattern language published in [7].

Rather than write a completely new interactive story from scratch, the re-
quest handling story was transformed into the interactive version that appears
below. The text was reworded into second-person (a defining characteristic of
interactive fiction stories), and decisions and associated consequences were in-
troduced into the tail end of the story.

3.2 Story Structure

The story is structured around decisions that the reader makes, relating to the
Strategy, Template Method, Null Object, and Composite Command
patterns.

The narrative, design choices, and consequences in different story paths are
derived from variations to the request handling story suggested by the story
authors (see [8]), as well as pattern descriptions and connections found in the
pattern language in [7].

Additionally, the story is based around a fixed set of functional and quality
requirements, which the reader is expected to fulfil. In the story, the functional
requirements - a system’s capabilities, services, and behaviour [9] - must always
be fulfilled. The quality requirements - the qualities of the system being devel-
oped that are influenced by design decisions taken [9] - vary according to the
reader’s choices.

3.3 Key Benefits of the Approach

The benefits of the approach to readers are:

3 Frank Buschmann, Kevlin Henney, Douglas C. Schmidt. Copyright 2007, John Wiley
& Sons Limited. Reproduced with permission.

c©James Siddle and Maisie Platts, 2009



4. GUIDANCE FOR THE INTERACTIVE STORY READER

– The ability to explore different solutions to design problems.
– They can experience both positive and negative consequences of design

choices.
– They will be engaged by the game-like format.

These benefits are explored in section 6.3 below.

4 Guidance for the Interactive Story Reader

4.1 Requirements

The interactive story is based around two functional requirements, and three
quality requirements. The functional requirements will always be fulfilled, whilst
the quality requirements may or may not be fulfilled based on your actions. The
text of the story describes the consequences of your design decisions in relation
to the quality requirements.

You may wish to refer back to this point when you are presented with choices
in the story to refresh your memory.

Functional Requirements

– Requirement F1: Support for an optional logging policy mechanism to
allow requests that are handled by the framework to be logged in a variety
of ways. This mechanism is expected to be used to allow different qualities
of service (such as the level of detail provided) for different deployments of
the request handling framework.

– Requirement F2: The ability to create compound requests, to support
composition of commands that have been written to be processed by the
framework.

Quality Requirements

– Requirement Q1: Developers and users of the framework should find it
easy to work with (understandability).

– Requirement Q2: It should be easy to perform routine maintenance of
framework and framework-using code, such as fault correction or perfor-
mance improvement (maintainability).

– Requirement Q3: It should also be easy to take advantage of new software
or hardware technologies that may become available in the future (evolvabil-
ity).

Note that functional requirement references are denoted below with an F,
quality requirements with a Q.

c©James Siddle and Maisie Platts, 2009



4. GUIDANCE FOR THE INTERACTIVE STORY READER

4.2 How to Read the Story

Start reading at step 1, which provides the context for the story4.
Make sure you are familiar with the requirements presented above, then

simply follow the decision instructions as they appear. A route map for the
story can be found in the appendices, along with thumbnails for each pattern
used.

A few other things to bear in mind are:

– The decisions presented are intentionally short on information to keep each
story succinct, and to promote exploration of the design options. Under
ideal circumstances, design decisions would be based on an assessment of all
relevant information, this is rarely the case on real projects so the decisions
do represent realistic choices.

– A valid option at each decision point is to go back a step - most software
projects employ some form of source control, allowing earlier versions of
source code to be reverted to. Please take this as an implicit option that
simplifies the presentation of available options.

– Similarly, the choices presented do not represent the entire set of decisions
available, rather a subset chosen to enable exploration of software design
in the particular context. In reality, software professionals are always free to
make whatever choice they wish. More experienced or advanced practitioners
may find the choice constraints limiting.

4 In addition to those listed above, other functional requirements apply to step 1.
These are not explicitly listed to ensure the information presented is relevant to the
interactive portions of the story.

c©James Siddle and Maisie Platts, 2009



5. THE INTERACTIVE STORY

5 The Interactive Story

Step 1.

You are developing an extensible request-handling framework for your sys-
tem, and are faced with the problem of how requests can be issued and handled
so that the request handling framework can manipulate the requests explicitly.

You decide to objectify requests as Command objects, based on a common
interface of methods for executing client requests. Command types can be ex-
pressed within a class hierarchy, and clients of the system can issue specific
requests by instantiating concrete Command classes and calling the execution
interface. This object can then perform the requested operations on the appli-
cation and return the results, if any, to the client.

The language chosen for implementing the framework is statically typed, and
there may be some implementation common to many (or even all) Commands in
your system. You wonder what the best form for the Command class hierarchy
is.

You decide to express the root of the hierarchy as an Explicit Interface.
Both the framework and clients can treat it as a stable and published interface
in it’s own right, decoupled from implementation decisions that affect the rest
of the hierarchy. You decide that concrete Command classes will implement
the root Explicit Interface, that common code can be expressed in abstract
classes below the Explicit Interface rather than in the hierarchy root, and
that concrete classes are expressed as leaves in the hierarchy.

You realise that there may be multiple clients of a system that can issue
Commands independently, and wonder how Command handling can be handled
generally.

You decide to implement a Command Processor to provide a central man-
agement component to which clients pass their Command objects for further
handling and execution. The Command Processor depends only on the Ex-
plicit Interface of the Command hierarchy.

You also realise that the Command Processor makes it easy to introduce a
rollback facility, so that actions performed in response to requests can be undone.
You extend the Explicit Interface of the Command with the declaration of
an undo method (which will affect the concreteness of any implementing classes),
and decide that the Command Processor will handle the management.

After introducing the undo mechanism, you recognise that there is also a
need for a redo facility, to allow previously undone Command objects to be
re-executed. You need to determine how the Command Processor can best
accommodate both undo history and redo futures for Command objects.

You decide to add Collections For States to the Command Proces-
sor, so that one collection holds Command objects that have already been
executed - and can therefore be undone - while another collection holds Com-
mand objects that have already been undone - and can therefore be re-executed.
You make both collections into sequences with ’last in, first out’ stack-ordered
access.

c©James Siddle and Maisie Platts, 2009



5. THE INTERACTIVE STORY

You understand that some actions may be undone (or redone) quite simply,
but that others may involve significant state changes that complicate a rollback
(or rollforward). You wonder how the need for a simple and uniform rollback
mechanism can be balanced with the need to deal with actions that are neither
simple nor consistent with other actions.

You decide to allow Command objects to be optionally associated with Me-
mentos that maintain whole or partial copies of the relevant application state, as
it was before the Command was executed. You also decide that those Command
types that require a Memento will share common structure and behaviour for
setting and working with the Memento’s state. You express this commonal-
ity by introducing an abstract class that in turn implements the Command’s
Explicit Interface; Memento based Command types can then extend this
abstract class. Command types that are not Memento based won’t inherit
from this abstract class, implementing the Explicit Interface directly, or
extending another abstract class suitable for their purpose.

Fig. 1. UML diagram of the software described so far

The UML diagram in figure 1 shows the software decribed so far.

Now continue at step 2...

Step 2.

You now realise that the framework needs a logging facility for requests,
and wonder how logging functionality can be parameterized so that users of the
framework can choose how they wish to handle logging, rather than the logging
facility being hard-wired.

If you wish to use inheritance to support variations in housekeeping func-
tionality, turn to 7.

Otherwise if you prefer the use of delegation, turn to 3.

c©James Siddle and Maisie Platts, 2009



5. THE INTERACTIVE STORY

Step 3.

You choose to express logging functionality as a Strategy of the Command
Processor, so that a client of the framework can select how they want requests
logged by providing a suitable implementation of the Strategy interface. This
ensures that the common Command Processor behavioural core is encapsu-
lated in one class, while variations in logging policy are separated into other
classes, each of which implements the Strategy interface.

Clients of the request handling framework can select how they want logging
performed by choosing which Strategy to instantiate the Command Proces-
sor with. Some users will want to just use the standard logging options, while
others may wish to define their own custom logging, so you ensure the framework
provides some predefined logging types.

This clean separation supports the understandability (Q1), maintainability
(Q2), and evolvability (Q3) of both the framework and any additional logging
policy classes introduced as part of concrete deployments.

Having introduced a parameterized logging facility, you wonder how the op-
tionality of logging can be realised, in the knowledge that it makes little func-
tional difference to the running of the framework.

If you wish to make changes to the Command Processor control flow to
take account of optionality, turn to 8.

Otherwise if you prefer a more transparent solution, turn to 4.

Step 4.

You provide a Null Object implementation of the logging Strategy which
doesn’t do anything when it is invoked, but uses the same interface as the oper-
ational logging implementations. This selection through polymorphism ensures
that you don’t need to introduce difficult to understand control flow selection
within the framework to accommodate the optional behaviour, and ensures un-
derstandable (Q1) and maintainable (Q2) framework code.

Turn to 5.

Step 5.

Your request handling framework is almost complete; but you still need to
ensure that compound requests are handled. Compound requests correspond to
multiple requests performed in sequence and as one; they are similarly undone
as one. The issue you face is how compound requests can be expressed without
upsetting the simple and uniform treatment of Commands within the existing
infrastructure.

If you want to create a special kind of Command to deal with all compound
requests, turn to 6.

Otherwise, if you’re happy for compound requests to be handled by the frame-
work as it stands, turn to 9.

c©James Siddle and Maisie Platts, 2009



5. THE INTERACTIVE STORY

Step 6.

You decide to implement a compound request as a Composite Command
object that aggregates other Command objects. To initialise a Composite
Command object correctly, you ensure that other Command objects (whether
primitive or COMPOSITE themselves) must be added to it in sequence.

This special type of Command enables arbitrary compound requests to be
created and composed, simplifying use of the request handling framework and
avoiding the need for complex, tightly coupled, dedicated compound request
classes - enhancing the maintainability (Q2) and evolvability (Q3) of client code.
This comes at the cost, however, of a reduction in the understandability (Q1)
of framework code - Composite [10] implementations can be complex and non-
obvious.

Turn to 10.

Step 7.

You decide to introduce a logging Template Method to the Command
Processor class, then call the abstract method whenever logging is required
within the Command Processor. By necessity, you make the Command Pro-
cessor class abstract.

Different logging policies are provided by creating subclasses of the Com-
mand Processor. This ensures that the common Command Processor be-
havioural core is encapsulated in a superclass, while variations in logging policy
are separated into different classes, each of which implements the Template
Method. Clients of the request handling framework can select how (or if) they
want logging performed by choosing which subclass to instantiate. Some users
will want to just use the standard logging options, while others may wish to
define their own custom logging, so you ensure the framework provides some
predefined logging subclasses.

This clean separation supports the understandability (Q1), maintainability
(Q2), and evolvability (Q3) of both the framework and any additional logging
policy classes introduced as part of concrete deployments.

Turn to 5.

Step 8.

You decide to branch explicitly whenever a null logging Strategy object
reference is detected within the Command Processor. Unfortunately this in-
troduces a great deal of repetition and complexity into the class, reducing under-
standability (Q1) and maintainability (Q2) of the framework code. A knock-on
effect of this may even be a reduction in system reliability, if, for example, checks
for null object references are forgotten.

See figure 2 for a real world example of the consequences of your decision.

c©James Siddle and Maisie Platts, 2009



5. THE INTERACTIVE STORY

Fig. 2. Step 8 - An unexpected null pointer exception may leave a system in an in-
consistent state, causing an online shopping system to send an order to the wrong
person.

c©James Siddle and Maisie Platts, 2009



6. ANALYSIS

Turn to 5.

Step 9.

You decide to support compound requests through concrete Command ob-
jects which aggregate other Command objects. You don’t need to make any
changes to the existing framework because this type of functionality is already
supported. But while this decision means the request handling framework it-
self is simpler, supporting understandability (Q1) and maintainability (Q2) of
framework code, it means that clients of the framework will find it harder to
use. Clients will need to represent each different compound request via a unique
concrete class, which will be difficult to maintain (Q2), and harder to evolve (Q3).

Turn to 10.

Step 10.

Congratulations, your request handling framework is complete! You’ve intro-
duced an optional logging policy mechanism and support for compound requests.
But is it easy to use, and is it easy to maintain? Is it everything you’d hoped
for? The decisions were yours, so whatever they were, you now have to deal with
the consequences!

The End

6 Analysis

Below, the features of the interactive story are discussed, and different paths
through the story are compared. The benefits and liabilities of the approach are
then examined, along with related and future work.

6.1 Interactive Story Features

Alternative Decision Points At step 2 of the story the reader is presented
with design alternatives that allow the choice of differing but equally desirable
solutions to the problem - one choice leads to Template Method, ther other
to Strategy, both reasonable solutions given the context.

Optimal versus Sub-optimal Decision Points The story also allows the
reader to explore the negative consequences that may be encountered if the
desirable solution for the context (i.e. the pattern) is not selected. For exam-
ple at Step 3, the reader either opts for a transparent solution which leads to
Null Object, or to introduce complicated control flow to deal with a missing
Strategy.

c©James Siddle and Maisie Platts, 2009



6. ANALYSIS

Simple Decision Descriptions The decision descriptions are intentionally
brief, omitting many important details. The intention of this approach is to
encourage the reader to explore all possible paths; decision texts provide just
enough information to make a choice, but not enough that the ’right’ choice is
immediately obvious. Similarly, patterns are described through the story, but it
is left to the reader to learn more through the thumbnails in the appendix, and
associated references.

Joining Branches The interactive story branches, but rejoins at steps 5 and
10. This demonstrates that not all branches in the story are irreconcilable. The
story can be rejoined at these two points because the context of the remaining
story is unaffected by differences introduced by the branches. Specifically, the
choice of how to support compound requests at step 5 is unaffected by the choice
of logging policy mechanism that was made previously. Note, however, that it
may not always be possible to reconcile story branches.

Story Ending Step 10 concludes the story by summarising the functional re-
quirements the reader fulfilled, and by prompting the reader to assess their de-
sign. The ending is intentionally vague and unrelated to the design choices taken;
this is because the consequences of each decision are described along the way. As
such the ending could be either desirable or undesirable, and this depends on the
consequences the reader has built up as they have gone. An alternative would
be to present different endings depending on the reader’s choices (see Further
Work, below).

Illustrations The story also includes an illustration associated with a particular
story step. This acts to tie the reader’s decisions to real world consequences, il-
lustrating possible consequences of the reader’s choices, and engaging the reader.

6.2 Comparison of Alternative Paths

To understand the interactive nature of the story, consider the following paths:

Route 1,2,3,4,5,6,10 : The reader selects a delegation approach to introducing
logging policy (i.e. Strategy), a transparent mechanism for handling a missing
logging policies (i.e. Null Object), and a special Command object for handling
compound requests (i.e. Composite Command).

Route 1,2,3,8,5,9,10 : The reader selects a delegation approach to introduc-
ing logging policy (i.e. Strategy), but chooses to introduce special control flow
handling for missing Strategy objects, and to ignore special handling of com-
pound requests.

c©James Siddle and Maisie Platts, 2009



6. ANALYSIS

The difference between the two routes is that the former route takes all
possible optimal choices, while the latter takes all possible sub-optimal choices.
In both cases, the choice of Strategy is a neutral choice because the alternative
was equally viable.

This highlights the purpose of the story - to encourage the reader to learn
about design by through exploration.

6.3 Benefits and Liabilities

Benefits As mentioned above, benefits of the approach are that readers: have
ability to explore different solutions to design problems; can experience both
positive and negative consequences of design choices; will be engaged through
the game-like format.

The decision making mechanism allows readers to explore various pattern-
based designs possible for a particular set of requirements, and to experience
negative consequences of sub-optimal choices. Going down the ’wrong’ path
gives the reader an understanding of negative consequences, but with no risk.
Cheating is to be encouraged - after going down the wrong path, the reader can
backtrack and change their mind, exposing them to the positive consequences of
other choices. Subsequent readings of significantly different routes, such as those
relating ’horror story’ designs, may give the reader further insight.

Simple decision descriptions that omit information supporting reader choices,
such as which choice is optimal, benefit the reader by encouraging the exploration
of both optimal and sub-optimal paths. This encourages the reader to think
’outside the box’, widening their exposure to all possible design consequences.
However this approach may not always be appropriate because some readers may
feel the game is ’rigged’. Similarly the omission of complete pattern descriptions
may be confusing to some readers. A solution to both these problems is to ensure
the reader is well-equipped with references to supporting material before they
begin, along with guidance on how to approach making decisions and how to
absorb the story.

Where interactive story paths are derived from a pattern language, the reader
will gain an understanding of the overall context, problems and solutions, and
pattern relationships in the language.

The format is engaging because reader decisions affect the outcome. The
story takes on a game-like element where the set of outcomes is constrained by
the reader’s choices, providing an engaging, fun experience.

Further, interactive stories in the “Choose Your Own Adventure” format are
written in a second person, genderless way. This avoids the dry, uninteresting
tone of ’third person passive’ writing. The authors of “Pattern-Oriented Software
Architecture: Volume 5” [11] advise that “A pattern description that is hard to
read, passive to the point of comatose, formal, and aloof is likely to disengage the
reader” - a story written about YOU is much more engaging. Illustrations that
show real world consequences of the reader’s actions (as found in most children’s
interactive fiction) further engage the reader.

c©James Siddle and Maisie Platts, 2009



6. ANALYSIS

Liabilities The main liability of the approach is the complexity of the writing
task. Even writing the simple story above was non-trivial, requiring many differ-
ent possibilities to be considered and accounted for. Interactive pattern stories
are also difficult to modify after creation.

The complexity of the writing task suggests the approach is better suited to
academic and educational fields than industrial projects, though starting with
the pattern story from [11] and the pattern language in [7] simplified the writing
process considerably. Tooling may also increase the feasibility of the approach,
for example the Storyspace 5 or iWriter 6 tools may simplify story development.

The decisions in the example story also lack any choices around whether
to fulfil requirements or not. Educational use of interactive pattern stories may
require both design alternative and requirement fulfilment choices.

Another liability is that individual patterns or full designs from an interactive
pattern story could be naively applied in an unsuitable context. For example
the consequences of applying Null Object versus conditional null checking
would be different if performance was a priority rather than understandability
or maintainability. Such misapplication could lead to unexpected and undesirable
consequences.

Finally, an interactive pattern story could be applied in a prescriptive way to
limit design options, for example to force designers to always use Strategy to
support transparent logging policies. This is likely to be unwelcome and would
be considered a ’strait-jacket’, unnecessarily restricting design choices.

6.4 Applicability

By extension from their non-interactive counterparts, interactive pattern stories
are likely to be most useful for education and learning. The ability to explore a
constrained design space in a fun, engaging way suggests that interactive pattern
stories will be a useful addition to teaching and learning environments.

Different audiences may benefit in different (and multiple) ways from reading
interactive pattern stories, so there are potentially as many applications as target
audiences. By varying the content, choices, or emphasis, different aspects of
software design and development may be illuminated.

The addition of explicit back-tracking options may be useful for certain au-
diences, for example where the writer wishes to ensure the reader will reach a
certain story path (optimal or otherwise). The addition of code or UML model
fragments and the creative use of typesetting such as italicising topic sentences
may support educational applications further.

Interactive pattern stories may also serve as the basis of linear narrative
stories, which may be desirable for some readers. Interactive stories written with
tooling support would be suitable candidates for generating such linear stories,
as long as tooling supported such functionality.

5 Storyspace website: http://www.eastgate.com/Storyspace.html
6 iWriter, by talkingpanda software: http://talkingpanda.com/iwriter/

c©James Siddle and Maisie Platts, 2009



6. ANALYSIS

It may also be possible to employ the approach for software architecture eval-
uation and comparison. Where patterns are applied to create a software system,
a pattern story may be written to capture the design choices made. It would then
be possible to introduce alternative steps to describe other potential outcomes,
for example a poor design choice that was avoided or a better design choice
that was missed. Such an approach may prove useful in describing architecture
rationale in an engaging way.

The approach is not thought to be well suited to industrial application or
technical documentation because of the effort involved in creating and updating
the stories. Again, tool support may make such applications feasible.

6.5 Related Work

Patterns, pattern languages, pattern sequences, and pattern stories can all be
used for software design education, and are related to interactive pattern stories
as follows.

Patterns provide examples of good solutions to design problems, study of
which provides readers with an understanding of principles behind the good
solution, and exemplary solutions which can serve as the basis of future designs
[10]. Patterns provide the problems and good solutions for ’optimal’ interactive
story steps, suggest less optimal story steps that may occur if a pattern is not
applied, and serve as the underlying descriptions of good design choices.

Pattern languages connect individual patterns together to form a broader
guidance framework targetting a particular problem domain. The study of pat-
tern languages provides an understanding of problems that occur in that domain,
the patterns to apply to solve those problems, and how patterns are related [11].
Pattern languages can provide the overarching context for interactive stories,
suggest potential story directions following story steps that describe applying
a pattern, and provide underyling pattern descriptions targetting a particular
domain.

Pattern sequences describe particular paths through a pattern language; a
sequence describes a combination of patterns, solving related problems in a par-
ticular domain, which are known to have successfully created a good design for
that domain [4]. Pattern sequences provide complete, optimal, story paths for
an interactive pattern story, which must be filled in with details and augmented
with alternatives to create a full interactive story.

Finally pattern stories provide concrete examples of one or more patterns
in action [4]. A pattern story may be derived from a pattern sequence, or may
simply tell the story of several patterns that were applied together to solve related
design problems. The study of pattern stories allows readers to understand the
concrete application of one or more patterns in the real world, filling in the gaps
in the more abstract patterns, languages, and sequences. Pattern stories may
used as the basis of interactive pattern stories, as is the case for the interactive
story above.

The interactive pattern story concept builds on the pattern concept, may be
applied in support of pattern languages and sequences, and is closely related

c©James Siddle and Maisie Platts, 2009



6. ANALYSIS

to the pattern story concept. The key differences between pattern stories and
their interactive form are: reader choices; the potential inclusion of sub-optimal
design descriptions; and the engaging, educational format provided by interactive
fiction.

6.6 Further Work

The biggest challenge to the successful application of interactive pattern stories
is in authoring. The example presented above is simple enough to illustrate
the benefits of interactive pattern stories; but stories developed for real-world
use are likely to be more complex, and this carries a risk for writers in being
overwhelmed by complexity. In particular the introduction of multiple endings
is known to be problematic, requiring overlapping narrative in different story
steps, and occasionally artificial design choices to provide complete coverage of
all options. Further work is required to find a simple, accessible story format
and structure that avoids accidentally complexity, allows exploration of design
choices, and keeps the writer focussed on the story rather than the mechanisms
of its telling.

A second area of further work is to test interactive pattern stories in the
real world. While an informal workshop at ACCU 20097 supports the benefits
outlined here, a more formal study is needed. The creation and application of
one or more interactive pattern stories with a group of student volunteers is one
option.

Other areas of exploration are the application of tool based approaches to
both story writing and telling, and the use of other media such as board games
or card based games (e.g. Strategy trumps Template Method8).

6.7 Conclusions

This paper proposed the introduction of interactivity into pattern stories to
engage readers and support the exploration of pattern-based designs and pattern
languages for educational purposes. The “Choose Your Own Adventure” game-
book format was proposed as a suitable basis for introducing interactivity.

An example interactive story was used to show the benefits of the proposed
medium to software design education. In the story, the reader was able to ex-
plore design alternatives in solving a fixed set of functional requirements, where
consequences were described in relation to several quality requirements.

The benefits of the approach are that readers can explore different solutions
to design problems, that readers can experience both positive and negative con-
sequences of design choices, and that the reader is engaged by the game-like
format. The liabilities are the complexity of the writing task, the possibility

7 Workshop on ”Exploring Design Space with interactive pattern stories”, James Sid-
dle and Kevlin Henney, ACCU 2009.

8 Top Trumps official website: http://www.toptrumps.com/

c©James Siddle and Maisie Platts, 2009



7. APPENDICES

of pattern misapplication, and the fact that prescriptive stories may be unwel-
come. The approach was considered to be applicable primarily in educational
environments.

Further work is needed to find a simple, accessible story format that shields
the writer from complexity but provides readers with the ability to explore design
choices and consequences.

6.8 Acknowledgements

Thanks to Paris Avgeriou for providing many insights and useful feedback dur-
ing the shepherding of this paper for EuroPLoP 2008, and to Kevlin Henney
for providing feedback on an early version of the paper. Thanks also to the au-
thors of POSA volumes 4 and 5 and to John Wiley & Sons Ltd for granting
permission to use the request handling framework story. Thank you also to Sam
Clark of Thames Hudson for providing excellent feedback and guidance on the
layout of the paper. Thanks to Oxford University’s Kellogg college for providing
funding for me to attend EuroPLoP 2008. Finally thank you to the reviewers
and editors of Transactions on Pattern Languages of Programs for supporting
the development of the final version of this paper.

7 Appendices

7.1 Appendix - Pattern Thumbnails

For the purposes of this paper the patterns used in the interactive story are
paraphrased below with references to the suitable pattern descriptions:

Command [10] When decoupling the sender of a request from its receiver,
encapsulate requests being made into command objects. Provide these command
objects with a common interface to execute the requests that they represent.

Explicit Interface [7] To enable component reuse, whilst avoiding unnecessary
coupling to component internals, separate the declared interface of a component
from its implementation.

Command Processor [7] When an application can receive requests from mul-
tiple clients, provide a command processor to execute requests on client’s behalf
within the constraints of the application.

Collections For States [7] For objects that need to be operated on collectively
with regard to their current state, represent each state of interest by a separate
collection that refers to all objects in that state.

c©James Siddle and Maisie Platts, 2009



7. APPENDICES

Memento [10] To enable the recording of an object’s internal state without
breaking encapsulation, snapshot and encapsulate the relevant state within a
separate memento object. Pass this memento to the object’s clients rather than
providing direct access to internal state.

Strategy [10] Where an object has a common core, but may vary in some
behavioural aspects, capture the varying behavioural aspects in a set of strategy
classes, plug in an appropriate instance, then delegate execution of the variant
behaviour to the appropriate strategy object.

Template Method [10] Where an object has a common core, but may vary
in some behavioural aspects, create a superclass that expresses the common be-
havioural core then delegate execution of behavioural variants to hook methods
that are overridden by subclasses.

Null Object [12] If some object behaviour will only execute when a particular
object exists, create and use a null object instead of checking for null object
references. This avoids the unnecessary introduction of complex and repetitious
null checking.

Composite Command [11] When a transparent and simple mechanism for
single and compound request execution is needed, express requests as Com-
mands, and group multiple Commands in a COMPOSITE to ensure that single
and multiple requests are treated uniformly.

7.2 Appendix - Story Map

Figure 3 provides an overview of the decisions that you can make and the different
routes through the interactive story found in this paper.

Circles represent decisions points and italicised text shows possible choices;
rounded boxes represent the resulting development activities and decision con-
sequences; numbers denote discrete steps in the interactive story. Where the
numbered steps describe both development activities and choices, the numbers
are repeated in the diagram. The grey box represents text that summarises the
story at the end.

References

1. Jackson, S., Livingstone, I.: The Warlock of Firetop Mountain. 25th anniversary
edn. Wizard Books (August 2007)

2. Packard, E.: Choose Your Own Adventure 1: The Cave of Time. Bantam Books
(1979)

3. Alexander, C., Ishikawa, S., M. Silverstein, e.a.: A Pattern Language. Oxford
University Press (1997)

c©James Siddle and Maisie Platts, 2009



7. APPENDICES

Fig. 3. Map of Story 1 - Varying Design Choices

c©James Siddle and Maisie Platts, 2009



7. APPENDICES

4. Henney, K.: Context encapsulation. three stories, a language, and some sequences.
EuroPLoP Proceedings (2005)

5. Montfort, N.: Twisty Little Passages: An Approach to Interactive Fiction. MIT
Press, Cambridge, MA, USA (2004)

6. Buschmann, F., Henney, K., Schmidt, D.C.: 7. Pattern Sequences. In: Pattern-
Oriented Software Architecture Volume 5: On Patterns and Pattern Languages.
John Wiley and Sons (2007) 186–188

7. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architec-
ture Volume 4: A Pattern Language for Distributed Computing. John Wiley and
Sons (2007)

8. Buschmann, F., Henney, K., Schmidt, D.C.: 9. Elements of Language. In: Pattern-
Oriented Software Architecture Volume 5: On Patterns and Pattern Languages.
John Wiley and Sons (2007) 251–254

9. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Second
edn. Addison Wesley (2003)

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

11. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architec-
ture Volume 5: On Patterns and Pattern Languages. John Wiley and Sons (2007)

12. Martin, R.C., Riehle, D., Buschmann, F., eds.: Pattern languages of program design
3. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1997)

c©James Siddle and Maisie Platts, 2009


