
An Example of the Retrospective
Patterns-Based Documentation

of a Software System

James Siddle

jim@jamessiddle.net

http://www.jamessiddle.net

c©James Siddle 2009

Abstract. An example pattern-based documentation that was created
retrospectively from pattern applications on an industrial project is pre-
sented. In addition to the example documentation, the paper examines
the approach taken, divergence of the documentation from the real sys-
tem, benefits, liabilities, and applicability of the approach. The paper
closes by drawing conclusions from the experience of creating the docu-
mentation.

Key words: Patterns, software patterns, pattern stories, software sys-
tem, software design, software architecture, retrospective pattern-based
documentation

1 Introduction

This paper examines the retrospective documentation of a concrete software sys-
tem through patterns, by presenting an example patterns-based documentation
based on a particular project and drawing conclusions from the experience of
creating the documentation.

The motivation for creating the pattern-based documentation that appears
in this paper is to retrospectively capture and communicate the historical in-
tent behind, and contribution of, pattern applications to software development.
The documentation in this paper serves as both an example, and as the basis
of analysis and conclusions that follow. In practice, such documentation could
be expected to support interested parties such as software maintainers in under-
standing software.

The documentation approach taken captures the contributions that individ-
ual patterns made to the concrete software system, in a stepwise fashion. Discrete
contributions are captured in individual steps of the documentation, and the en-
tire collection of these contributions make up the complete documentation.

The remainder of the paper is organised as follows: First, the intended au-
dience and key terms are introduced, then a description of the software de-
velopment project where patterns were applied or recognised retrospectively is
provided. The documentation in this paper attempts to capture and commu-
nicate the contributions of pattern applications on the project described. This



1. INTRODUCTION
An Example of Retrospective Patterns-Based Documentation

is followed by a description of the documentation approach, an overview of the
documentation that follows, and then the complete patterns-based documen-
tation. An analysis examines differences between the documentation and the
real system, along with potential benefits, liabilities, and applicability of the ap-
proach. The paper closes by drawing a number of conclusions related to creating
patterns-based documentation.

1.1 Intended audience

The ideal reader of this paper is a software practitioner - whether programmer,
developer, engineer, or architect with an interest in how software patterns can
be employed to capture and communicate the concrete software system that
results from their application.

The reader may also be interested in how patterns can be combined, because
while applying a pattern in isolation is useful, a complex software system is
likely to require the application of more than one pattern. The reader may also
be familiar with the idea of architecture patterns and want to know how to fit
patterns together into an overall architecture.

1.2 Terminology

To frame the following discussion, it’s necessary to introduce the following con-
cepts:

Patterns and Pattern Stories: A pattern describes a recurring solution to a prob-
lem that occurs in a particular context by resolving the forces acting in that
context. The reader is referred to [8] and [11], arguably the best known patterns
works, for an introduction to and examples of patterns.

Another patterns-related concept mentioned in this paper that needs a little
introduction is that of a pattern story [9]: A pattern story describes a concrete
software system in terms of the patterns used to create it.

Software Architecture: There are many definitions of software architecture in
software design literature, Grady Booch’s recent definition is particularly suited
to understanding the application of software patterns to the creation of software
architecture:

As a noun, design is the named (although sometimes unnameable)
structure or behavior of a system whose presence resolves or contributes
to the resolution of a force or forces on that system. A design thus rep-
resents one point in a potential decision space. A design may be singular
(representing a leaf decision) or it may be collective (representing a set
of other decisions). [...]

All architecture is design but not all design is architecture. Archi-
tecture represents the significant design decisions that shape a system,
where significant is measured by cost of change. [3]

c©James Siddle and Maisie Platts, 2009



An Example of Retrospective Patterns-Based Documentation

2. PROJECT CONTEXT

Note that cost of change was not necessarily the most significant factor un-
derstood by the team developing the software under discussion, who it is thought
did not share a common understanding of architecture.

2 Project Context

The software system documented in this paper originated on a project where pat-
terns were applied to create a component middleware software architecture; this
project is briefly introduced below. For reasons of confidentiality, the following
description has been anonymized.

2.1 Project Introduction

The aim of the project under consideration was to develop the software for an
innovative telephony product using C, C++ and Java programming languages,
and it was necessary for the software to run on a custom hardware platform that
was being developed at the same time. Scrum [17] and XP [4] Agile methodologies
were followed on the project.

In addition to functional requirements from the telephony domain, there
were also non-functional requirements on the software. In particular, a custom,
service-oriented, embedded middleware was required in order to support a prod-
uct line strategy that was being taken. The key requirements on the middleware
were:

– Support for reusable, telephony-domain services
– Dynamic deployment of services
– Platform independence
– Abstraction of service communication
– Location transparent service communication
– Abstracted service execution
– A common approach to management and testing of services
– An extensibility mechanism in the communication path between services

The middleware was also required to support specific services from the tele-
phony domain that had been envisaged as part of the product-line strategy,
such as distributed directory lookup services, “presence” propagation services,
and journal services to record user actions.

The middleware was developed by a team of eight people over a period of
approximately six months, as part of a wider development effort. Early project
iterations focussed on elaborating middleware, platform, and application-level
architecture. Patterns played an important role in the design and implemen-
tation that took place as part of middleware elaboration. The elaboration was
driven by requirements (such as those described above) that were drawn from an
architecture road map containing a loosely ordered collection of broadly stated
architectural concerns.

Figure 1, reproduced from [18], provides an overview of the middleware ar-
chitecture that was envisaged at the start of the project.

c©James Siddle and Maisie Platts, 2009



3. DOCUMENTATION APPROACH
An Example of Retrospective Patterns-Based Documentation

Fig. 1. Envisaged middleware architecture

2.2 Pattern Applications

A broad selection of patterns were applied in creating the middleware. These
were drawn from several sources. Several were drawn from the Pattern Oriented
Software Architecture [11] [12] [13] and Design Patterns [8] books, while others
were recommended by a knowledgeable source rather than being drawn from a
patterns publication. For a fuller picture of the patterns that were applied on
the project, the reader is referred to [18], which provides a broad overview of the
patterns applied on the project.

3 Documentation Approach

The documentation presented in the following section was created by capturing
the structure and behaviour associated with patterns that were either applied or
retrospectively recognised in the software system. Four aspects of the approach
taken are examined below - purpose, focus, form, and pattern selection.

3.1 Purpose

The patterns-based documentation presented in this paper was created as an
example of how patterns can support the communication of software system
knowledge between software professionals. Each pattern is included in order to

c©James Siddle and Maisie Platts, 2009



An Example of Retrospective Patterns-Based Documentation

3. DOCUMENTATION APPROACH

communicate concepts, structure, and behaviour resulting from pattern appli-
cations, informing readers of the important elements of a software system and
ultimately supporting the creation and maintenance of quality software.

Section 6.2 below provides further examination of the potential benefits of a
patterns-based approach to software documentation.

3.2 Documentation Focus

The focus of the documentation is historical, in order to show the evolution of the
middleware up to a specific point in it’s elaboration. This is to help the reader
to understand the early evolution of the software to support their understanding
of why the system is the way it is today. The software development that took
place following architecture elaboration followed the course that many projects
do, where the clean separation and guidelines associated with the elaborated
architecture gradually dissolved and were discarded. Thus, the focus of the doc-
umentation is on the original intent of the software, which is what is presented
here.

The documentation is also focussed on the structure and behaviour of the
software system, specifically the classes and interfaces that resulted from pat-
tern application and the roles and responsibilities taken. This focus was chosen
because the aim was to enable readers to quickly orientate themselves with the
system, both in it’s current form (when subsequent changes have not been made),
and with the system as originally intended (where changes have been made).

The documentation does not focus on presenting the software architecture,
though the documentation may be architecturally relevant because architectural
significance was one criteria used to select patterns for inclusion (see below). The
emphasis on structure and behaviour is selected because an extended period of
time (approximately 2 years) has passed since the the software was developed,
and a focus on concrete software elements is likely to be more accurate than a
focus on architecture rationale.

Finally the focus is high-level, (i.e. class and interface), rather than low-level
(i.e. method, function). The aim being to present an overall view of the software
system rather than to dive into details.

3.3 Documentation Form

A simple form was selected to communicate the software system by way of pat-
terns.

A section is included for each pattern in the documentation, the problem
encountered and solution selected are described, and then concrete structure
and behaviour associated with the pattern is presented.

Note that section 5.7 actually captures the contribution of two patterns.
This slight variation of the form allows for a cleaner presentation of the software
system because each pattern’s contribution was relatively small, and the two
patterns are closely related.

Each section contains:

c©James Siddle and Maisie Platts, 2009



3. DOCUMENTATION APPROACH
An Example of Retrospective Patterns-Based Documentation

– Title - pattern name and reference
– Problem and Solution
– System Structure and Behaviour
– Class Diagram

The patterns are presented in an order to allow an understanding of the
software system to gradually build up in the readers mind. This is partially
possible because the order selected is similar to the order in which patterns were
applied and implemented during development, on an iteration by iteration basis.
This means that certain software elements (e.g. the ’service’ layer) are introduced
by one pattern, before being referred to by the documentation associated with
following patterns.

Additionally, certain later steps describe refinements to earlier steps. Mostly
this is because refinements took place as described, however in some places this
approach allows for a simpler and clearer presentation of the software system.

3.4 Patterns Selected, Selection criteria

Patterns were selected for inclusion primarily according to architectural signifi-
cance, in order to provide an understanding of significant parts of the middleware
to the reader. The judgement of the significance of each pattern was made in a
subjective manner, according to the understanding of the software system that is
held by the author as the architect of the middleware. So while the documenta-
tion itself is not architectural in nature, it can be seen as architecturally relevant.
This criteria is considered to be valid because the aim of the documentation is
to provide an historical introduction to the software rather than to serve as the
basis of formal analysis or comprehensive education.

The type of pattern application was another consideration for pattern se-
lection; that is whether a pattern was explicitly applied, implicitly applied, or
retrospectively recognised. An examination of selection criteria was performed
following the documentation creation, an overview of which can be found the
first appendix. This examination suggests that:

– Architectural significance was the main criteria for inclusion.
– Implicitly applied patterns were excluded on the grounds of being obvious

to developers (e.g. Caching).
– Some architecturally significant elements were retrospectively recognised as

patterns in order to allow their documentation here (e.g. Broker).
– One pattern was excluded because the resulting implementation was not

effective at solving the problem (Asynchronous Completion Token). 1

The pattern story mentioned in [18] provides a detailed description of the
patterns that served as the selection pool for the documentation, and the com-
plete selection pool is listed in the appendices. The patterns selected for inclusion
in the documentation can be found in table 1 below.
1 This is thought to be because of a naive understanding of patterns (i.e. the model

solution is the pattern), and subsequently a poor selection of context in which to
reapply the pattern (i.e. at the service interface rather than middleware level).

c©James Siddle and Maisie Platts, 2009



An Example of Retrospective Patterns-Based Documentation

4. DOCUMENTATION OVERVIEW

4 Documentation Overview

To serve as an introduction to the complete documentation that follows, a docu-
mentation overview can be found in Table 1. The table summarises the pattern
applications that took place to create the middleware architecture. The three
columns in the table represent:

– Step - a discrete numbered step in the documentation. The steps correspond
to subsections in the documentation.

– Pattern name - the name of the pattern (or patterns) that are presented at
each step

– Contribution - a summary of the contribution of the pattern(s) to the soft-
ware system

Step Pattern Contribution

1 Layers Encapsulate major functional areas to enable
reuse and independent variation

2 Wrapper
Facade

Encapsulate low-level, host-specific functions and
data structures

3 Component
Configurator

Enable dynamic service deployment and runtime
life-cycle management of services

4 Broker Establish service communication and location
transparency

5 Executor Abstract service execution, support concurrent
service execution

6 Explicit
Interface

Add explicitly defined service interfaces

7 Encapsulated
Context Object

Introduce service discovery context object, make
available to services

.. Decoupled
Context Interface

Decouple services from context implementation
by introducing service discovery interface

8 Proxy Add client-side object implementing explicit ser-
vice interface, encapsulates remote communica-
tion

9 Invoker Add server-side object, receives service invoca-
tions and invokes explicit service interface; encap-
sulates service interface invocation

10 Lookup Provide service discovery mechanism

11 Interceptor Introduce flexible interception points on commu-
nication path between services

Table 1. Documentation overview

c©James Siddle and Maisie Platts, 2009



5. PATTERN-BASED SOFTWARE SYSTEM DOCUMENTATION
An Example of Retrospective Patterns-Based Documentation

5 Pattern-based Software System Documentation

This section presents the documentation of the software system that was devel-
oped, in the form described in section 3.

5.1 Layers [11]

Problem and Solution: There is a requirement to create a product line archi-
tecture where major building blocks can be reused, but this won’t be possible
without clean and careful dependency management between the building blocks.

“Application”, “Service”, and “Platform” Layers are introduced. These layers
establish high level groupings for software elements that will be introduced later,
and introduce some basic concepts such as “Service” and “Platform”.

System Structure and Behaviour: Each layer may only depend on those below
it in the stack; in this case the Service layer is non-strict in recognition that
Application layer code may need to invoke Platform layer functionality. The
Platform layer however is strict in order to enforce platform independence.

Fig. 2. Layers diagram

c©James Siddle and Maisie Platts, 2009



An Example of Retrospective Patterns-Based Documentation

5. PATTERN-BASED SOFTWARE SYSTEM DOCUMENTATION

5.2 Wrapper Facade [12]

Problem and Solution: Service and Application layer code should be platform
independent, but how do you achieve this without littering the code with con-
ditional compilation?

Wrapper Facade classes are introduced into the Platform layer, to encapsulate
low-level host specific functions and data structures. These classes provide a
set of abstractions which in conjunction with the strict Platform layer provide
platform independence.

System Structure and Behaviour: FileAccess provides access to the file system,
LibraryLoader provides library management and symbol resolution, Inter-
ProcessCommunication allows communication between processes and Threading
supports starting, stopping, and synchronising threads.

Fig. 3. Wrapper Facade diagram

c©James Siddle and Maisie Platts, 2009



5. PATTERN-BASED SOFTWARE SYSTEM DOCUMENTATION
An Example of Retrospective Patterns-Based Documentation

5.3 Component Configurator [12]

Problem and Solution: Dynamic service deployment and life-cycle management
is needed, but how can this be achieved in a consistent, common way, and so
that services have to perform as little self-management as possible?

Component Configurator is applied so that service deployment and life-
cycle are consistently managed via a common interface, along with “creator
functions” from each service’s library, and a component descriptor file.

System Structure and Behaviour: ConcreteComponent1 is created and initialised
via a “creator function” in the same library as the component. The Component-
Configurator class loads the library via the LibraryLoader class and calls
the creator function within it based on information contained in a component
descriptor configuration file. ConcreteComponent1 implements the Component
interface, allowing consistent management of components by the Component-
Configurator and ComponentRepository classes. FileAccess and Library-
Loader are Wrapper Facade classes introduced above; the other classes are
introduced by Component Configurator. 2

Fig. 4. Component Configurator diagram

2 From this point on, services are taken to be realised as Component objects.

c©James Siddle and Maisie Platts, 2009



An Example of Retrospective Patterns-Based Documentation

5. PATTERN-BASED SOFTWARE SYSTEM DOCUMENTATION

5.4 Broker [11]

Problem and Solution: Flexible service deployment is needed, but if services have
direct, hard-wired communication paths to other services the system will not be
flexible, so how do you achieve location transparent communication between
services?

The Broker pattern is applied so that services communicate indirectly via an
instance of a Broker class in a well known location.

System Structure and Behaviour: The ComponentConfigurator class creates
and initialises an instance of the Broker CommunicationChannel class for
each Component, then passes it to the Component during initialisation so that
it can send and receive messages. The CommunicationChannel is associated
with the Component in the ComponentRepository to ensure that it is cleaned
up correctly. CommunicationChannel instances communicate with each other
in a location transparent way, by sending and receiving all messages via an
instance of the Broker class in a well-known location. Low level communica-
tion takes place between the Broker and CommunicationChannel classes via the
InterProcessCommunication Wrapper Facade class.

Fig. 5. Broker diagram

c©James Siddle and Maisie Platts, 2009



5. PATTERN-BASED SOFTWARE SYSTEM DOCUMENTATION
An Example of Retrospective Patterns-Based Documentation

5.5 Executor [6]

Problem and Solution: Services need to be executed when they receive a message,
but how can service execution be handled in a consistent way?

Executor is applied to introduce an Executor class which is responsible for
handling execution for all services.

System Structure and Behaviour: The Executor waits for messages to arrive
over a service’s CommunicationChannel object and for each message that arrives
an appropriate thread of execution for message processing is established; the
associated Component is informed of the message on the resulting thread. The
ComponentConfigurator class is refined to associate an Executor instance with
each Component, and the Executor associated with each Component is initialised
with the appropriate CommunicationChannel object.

The Executor uses it’s knowledge of the incoming message and Component in-
stance to determine a threading policy such as single or multi-threading, or
priority. The thread itself is controlled via a Wrapper Facade class.

Because Executors are now interacting with CommunicationChannel objects on
each Components behalf, CommunicationChannel objects are no longer passed
to Components.

Fig. 6. Executor diagram

c©James Siddle and Maisie Platts, 2009



An Example of Retrospective Patterns-Based Documentation

5. PATTERN-BASED SOFTWARE SYSTEM DOCUMENTATION

5.6 Explicit Interface [14]

Problem and Solution: Services can send and receive messages to invoke other
services, but this tightly couples service invocation with message formatting and
transmission; how do you decouple service invocation from component commu-
nication or internals?

Explicit Interface is applied to provide a way of calling services via abstract,
implementation agnostic interfaces.

System Structure and Behaviour: The ExplicitInterface and ConcreteExp-
licitInterface interfaces together provide the implementation of the pattern.
Components implement interfaces according to the abstractly defined services
that they offer, and call objects that implement the interfaces which define the
services they require.

The ExplicitInterface class is introduced to allow consistent handling of ob-
jects which expose defined services. The explicit interfaces that define services
are referred to as ’service interfaces’ from this point onwards.

Fig. 7. Explicit Interface diagram

c©James Siddle and Maisie Platts, 2009



5. PATTERN-BASED SOFTWARE SYSTEM DOCUMENTATION
An Example of Retrospective Patterns-Based Documentation

5.7 Encapsulated Context Object, Decoupled Context Interface [9]

Problem and Solution: Services need to discover other services, but how can the
services be shielded from potentially complex discovery logic?

An Encapsulated Context Object with a Decoupled Context Inter-
face is introduced to provide a service discovery object that services can call as
necessary.

System Structure and Behaviour: The ComponentConfigurator class provides
the implementation of the Encapsulated Context Object pattern, while
the ServiceContext interface is the realisation of the Decoupled Context
Interface pattern.

Components call the ServiceContext interface (which is provided to them on
initialisation) to request objects that implement particular services; objects that
implement the requested services are returned to the Component as instances of
ExplicitInterface. Components cast returned ExplicitInterface instances
to specific service interfaces to be able to request required services.

Fig. 8. Encapsulated Context Object and Decoupled Context Interface di-
agram

c©James Siddle and Maisie Platts, 2009



An Example of Retrospective Patterns-Based Documentation

5. PATTERN-BASED SOFTWARE SYSTEM DOCUMENTATION

5.8 Proxy [8]

Problem and Solution: Services can request other services and obtain Explicit
Interfaces to them, but how are service invocations translated into messages
then sent via the location transparent Broker?

A Proxy is introduced to encapsulate the remote invocation of service interfaces
via the location transparent communication provided by the Broker implemen-
tation.

System Structure and Behaviour: Proxy objects are provided to Components by
the ComponentConfigurator on service discovery. The Proxy is initialised with
the CommunicationChannel object of the requesting service, along with address-
ing information of the remote service that the Proxy represents. Proxy life-cycle
is managed by the ComponentConfigurator, in a similar way to Component and
CommunicationChannels.

ConcreteProxy encodes the request (including methods, parameters, and reply
information) in a format suitable for transmission, then uses a Communication-
Channel to send the request. Replies are received via the same channel, then
decoded and returned to the calling Component by the Proxy.

Fig. 9. Proxy diagram

c©James Siddle and Maisie Platts, 2009



5. PATTERN-BASED SOFTWARE SYSTEM DOCUMENTATION
An Example of Retrospective Patterns-Based Documentation

5.9 Invoker [19]

Problem and Solution: Services support explicit service interfaces, but how are
messages received from another service via the Broker translated into invoca-
tions on the service itself?

An Invoker is introduced to encapsulate the receipt and translation of messages
into an invocation on a particular service interface.

System Structure and Behaviour: We now see how remote service invocations
from Proxy objects are handled when they arrive in the locality of the Component
that provides the remote implementation.

When an Executor receives a message for its Component it discovers an appro-
priate Invoker. This discovery will be based on the required service interface
(named in the message) and will be requested via the FrameworkContext in-
stance (another Encapsulated Context Object with a Decoupled Con-
text Interface). The Executor will have received the FrameworkContext
during initialisation.

The Executor delegates invocation of its Component to the discovered Invoker,
which decodes the received message to determine the method to invoke and pa-
rameters to pass. As with Proxy objects, Invoker object lifecycle is managed by
the ComponentConfigurator, in a similar way to Component and Communication-
Channels. After invocation, any return value or parameters are encoded by the
Invoker into a reply message, which will be sent to the originating communi-
cation channel by the Executor. To ensure correct routing of replies, the Proxy
will have associated a unique identifier with the outgoing request message, and
requests that it’s CommunicationChannel passes incoming messages with that
identifier to the Proxy.

Fig. 10. Invoker diagram

c©James Siddle and Maisie Platts, 2009



An Example of Retrospective Patterns-Based Documentation

5. PATTERN-BASED SOFTWARE SYSTEM DOCUMENTATION

5.10 Lookup [13]

Problem and Solution: Remote services can now be invoked via explicit service
interfaces, but how is service discovery performed?

The introduction of Lookup provides resolution of objects that provide required
services.

System Structure and Behaviour: A remote Registry is introduced that can
be consulted to discover the named CommunicationChannel location of imple-
mentations of particular service interfaces; the ComponentRepository is also
searched in case required services are provided locally.

A Component requests, via the ServiceContext, an object that provides a re-
quired service. The ComponentConfigurator class, in implementing the Service-
Context interface, must provide an object back to the requester.

The ComponentConfigurator searches the local ComponentRepository for any
local (i.e. in-process) Components that support the interface. If found, the Comp-
onent is returned directly to the requester. Otherwise, the remote Registry
is searched, and if a remote object supporting the interface is found, location
information is obtained. The location information is used to initialise a Proxy
which is then returned to the requester.

The remote Registry is initialised with remote object interface and location
information by ComponentConfigurator instances during Component initiali-
sation.

Fig. 11. Lookup diagram

c©James Siddle and Maisie Platts, 2009



5. PATTERN-BASED SOFTWARE SYSTEM DOCUMENTATION
An Example of Retrospective Patterns-Based Documentation

5.11 Interceptor [12]

Problem and Solution: An interception point is needed on the communication
path between services, but how can this be provided dynamically, without re-
quiring code changes to the communication path?

The Interceptor pattern provides a flexible, dynamic interception point with
the minimum disruption to code. The following text along with the class diagram
in figure 12 describe an interception point immediately prior to service execution,
when a message is received.

System Structure and Behaviour: When an Executor object receives a message
for its service, it creates an instance of the ExecutionInterceptionContext
class and initialises it with the received message. The Executor informs an in-
stance of the ExecutionInterceptionDispatcher class of the event, passing it
the interception context object as a parameter. The dispatcher object is respon-
sible for maintaining a list of interested interceptors, each of which implements
the ExecutionInterceptor interface. The dispatcher informs the interceptors
of the event, passing on the context object it received. The interceptors can ex-
amine the message via the context object. The can also interact with the context
object to perform any interception activities they wish to, such as redirecting or
blocking the message, or performing security checks of statistic gathering.

Fig. 12. Interceptor diagram

c©James Siddle and Maisie Platts, 2009



An Example of Retrospective Patterns-Based Documentation

6. ANALYSIS

6 Analysis

Below, an analysis of the patterns-based documentation is described by exam-
ining how the documentation differs from the actual software system, what the
benefits and liabilities of the approach are, and where the approach may be
applied.

6.1 Differences between Documentation and Software System

The software system as presented in the previous section differs from the actual
software system that was developed in two ways.

Firstly, the documentation presents an historical view of the system at a
point when the project was transitioning from architecture elaboration to full-
scale production, and differs from the final software that was produced, tested,
fixed, and ultimately entered maintenance.

Secondly, the system described differs from the actual system in order to
more clearly communicate the intent of the original design to the reader. The
documentation also presents simplifications and implementation reorderings to
educate readers on significant aspects of the design which may be confused by
the complexities of the real system.

The differences between the real system and the system as presented are
described in the first appendix, and are also discussed in the conclusions section
below.

6.2 Benefits and Liabilities

Benefits The main benefit of using patterns as the basis of software documen-
tation is to enable readers to quickly gain a working knowledge of a particular
software system, to support the creation and maintenance of quality software.
As Alistair Cockburn says in [5], when discussing the application of a “Theory
Building View” [10] [16] to software documentation:

What should you put into the documentation? That which helps the
next programmer build an adequate theory of the program. [...] The
purpose of the documentation is to jog memories in the reader, set up
relevant pathways of thought and experiences and metaphors. [...]

Experienced designers often start their documentation with just: The
metaphors; Text describing the purpose of each major component; Draw-
ings of the major interactions between the major components.

These three items alone take the next team a long way to constructing
a useful theory of the design.

In this case, the patterns provide the metaphors, and for each pattern there
is a description and a diagram describing purposes and interactions of software
elements. It is considered that this approach provides just enough documenta-
tion to enable the reader to quickly establish the “theory of the design”, based

c©James Siddle and Maisie Platts, 2009



6. ANALYSIS
An Example of Retrospective Patterns-Based Documentation

on an understanding of patterns. For readers knowledgeable about patterns, a
documentation overview similar to that presented in table 1 may be enough to
gain a useful understanding of the software system.

It is also thought that the software system can be better understood by de-
scribing many small steps that are similar to the actual evolution of the software
system. Each step describes a problem encountered, the pattern used to solve the
problem, and the resulting implementation and effect on the evolving software
system. This is similar to the tea garden example in [2], where the application
of many patterns contribute to an understanding of the architecture as a whole.

The documentation also gradually introduces important entities and concepts
from the problem domain, and gives a grounding in the Ubiquitous Language
[7] of the project as understood by the writer. Understanding an existing software
system via pattern based documentation can help readers to understand the
project’s underlying problem domain and associated language.

Another important benefit is that the documentation presented is signifi-
cantly shorter than would normally be found, the consequences of this being
that it will be more easily understood and also that it is more likely to be
written in the first place.

By including patterns which are considered to be architecturally significant,
the documentation can also serve as a kind of architecture introduction, drawing
the reader’s attention to elements of the software system which are of greater
significance than others. Additionally, the patterns not only explain the archi-
tecture that was chosen, but also the rationale behind that architecture to some
degree.

Additionally, the historical focus of the documentation may provide insight
into why a system is the way it is. Due to evolution and maintenance, class
names or relationships that no longer make sense may be explained to the reader,
however simplifications or intentional differences from the real system may un-
dermine this.

Finally the documentation can provide examples of pattern applications in
the context in which they were made, which may be useful for patterns education
or research. However the usefulness of the examples will depend on their accuracy
- in this paper the documentation does not describe the created system exactly,
so the examples should not be taken literally.

Liabilities The main liability of the approach is that the documentation is
not an exact representation of the software system. The benefit of being able
to quickly build a mental model of the historical evolution of a software system
may outweigh this liability. However it is important to present an honest view
and to include the differences from the real system in some form, and to explain
the purpose for the variations, as shown in the second appendix.

Secondly, this approach may not be applicable for design decisions made
that are not motivated by a pattern. This may be the case where the design is
so unique that no pattern exists.

c©James Siddle and Maisie Platts, 2009



An Example of Retrospective Patterns-Based Documentation

6. ANALYSIS

The documentation may also be hard to understand for readers who have not
been exposed to the patterns, and who may find the documentation confusing.
However the provision of references for each pattern may alleviate this, and well-
named patterns may help the reader to grasp the purpose of the pattern without
further reference.

The fact that low level details of the patterns and the software system are
not included may be problematic to readers who wish to understand more about
them. By increasing the level of detail, more useful information can be included,
but at the cost of a succinct presentation.

Finally, the reader may have a different understanding of the patterns used,
resulting in misinterpretation. This may be exacerbated by the fact that mul-
tiple, occasionally conflicting versions of patterns can sometimes be found. A
description of how the pattern contributed to the software system should help
to bridge the gap in the reader’s understanding, though this does require the
reader to be open to the interpretation of the patterns used.

6.3 Applicability

The documentation approach outlined in this paper may prove applicable when
creating software using ad-hoc pattern application, i.e. where patterns are ap-
plied as the opportunity arises. This approach was taken on the project under
discussion, so naturally should be considered as a candidate for applying the
documentation approach.

An Agile approach was taken on the originating project, where patterns were
selected and applied in an iterative way. As such the documentation partially
reflects the evolution of the software, showing intermediate steps in it’s growth.
The documentation approach may therefore prove useful where patterns are
applied during architecture evolution.

The approach may prove useful when a pattern language based approach to
pattern application is taken, where the transition from one pattern to the next
is guided by the context resulting from each particular pattern application. The
closer match between the initial and resulting context of patterns applied from
a pattern language may lead to documentation that is easier to understand if
the approach outlined in this paper is taken.

Patterns-based documentation of a software system may also be useful to
teaching patterns. In a similar way to pattern stories, the concrete focus and
practicality of the documentation may support students in applying patterns
by showing them the real-world consequences of pattern applications. Exposing
students to several examples of patterns-based documentation with variations
of a particular pattern may also help them to understand how patterns provide
design guidance, rather than rubber-stamp solutions

c©James Siddle and Maisie Platts, 2009



7. CONCLUSIONS
An Example of Retrospective Patterns-Based Documentation

7 Conclusions

The following conclusions relate to the process of creating pattern-based doc-
umentation, and were drawn by reflecting on the experience of creating the
documentation presented.

The main conclusion that can be drawn is that it is important to avoid
varying the documentation from the real system if possible. If variations are
needed for example to simplify the presentation or to communicate historical
intent, then such variations should be called out when they are made along with
an indication of why they are being made.

Variations from patterns should also be documented to ensure the reader does
not assume the design as described is synonymous with the documented pattern.
A potential improvement on the approach would be reorient the documentation
primarily around problems faced in design, then to document how each pattern
contributed to the design.

Each pattern application should ideally be documented in an ongoing way
during design and development. A template document with fields for pattern-
based elements such as context, problem, pattern selected, solution implemented,
contribution of pattern, variation from actual system etc. may prove useful in
such a scenario.

The documentation should also include an indication of whether a pattern
was explicitly applied, implicitly applied, or retrospectively recognised to avoid
confusion around design intent.

Finally care should be taken during documentation to ensure problem related
fields really do describe problems rather than requirements for solutions. The
latter are useful, but should be motivated with the problem that resulted in the
requirement in the first place.

Acknowledgements

Thanks to Kevlin Henney for suggesting that I write this paper and for feedback
and support during it’s development, to James Coplien for providing helpful
comments and feedback on an early draft of the paper, to James Noble for
shepherding the paper for EuroPLoP 2007 and offering many useful comments.
Thanks also to workshop group ’Gray’ at EuroPLoP 2007, and to the patient re-
viewers for “Transactions on Pattern Languages of Programming” for providing
extensive and in-depth feedback which has improved this paper substantially.
Finally, thank you to David Illsley from IBM for helpful review comments, and
to IBM generally for supporting the publication of this paper.

References

1. C. Alexander, S. Ishikawa, M. Silverstein, et al: A Pattern Language. Oxford Uni-
versity Press, 1997

2. C. Alexander, The Nature of Order Book 2: The Process of Creating Life. The Center
for Environmental Structure, 2002

c©James Siddle and Maisie Platts, 2009



An Example of Retrospective Patterns-Based Documentation

7. CONCLUSIONS

3. G. Booch, Handbook of Software Architecture Blog, March 2nd, 2006, On Design
http://booch.com/architecture/blog.jsp?archive=2006-03.html

4. K. Beck, Extreme Programming Explained: Embrace Change. Addison-Wesley Pro-
fessional, 1999

5. A. Cockburn, Agile Software Development: The Cooperative Game, 2nd Edition.
Pearson Education / Addison Wesley, 1997

6. E. Crahen, Executor. Decoupling tasks from execution. VikingPLoP 2002
7. E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software.

Addison-Wesley Professional, 2003
8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns - Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995
9. K. Henney, Context Encapsulation. Three Stories, a Language, and Some Sequences.

EuroPLoP 2005. urlhttp://www.two-sdg.demon.co.uk/curbralan/papers.html
10. P. Naur, Programming as Theory Building, in Computing: A Human Activity. ACM

Press, pp. 37-48, 1992
11. F.Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-

Oriented Software Architecture Volume 1 - A System of Patterns. John Wiley and
Sons, 1996

12. D.C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented Software
Architecture Volume 2 - Patterns for Concurrent and Distributed Objects. John
Wiley and Sons, 2000

13. M. Kircher and P. Jain, Pattern-Oriented Software Architecture Volume 3 - Pat-
terns for Resource Management. John Wiley and Sons, 2004

14. F.Buschmann, K. Henney, D.C. Schmidt, Pattern-Oriented Software Architecture
Volume 4: A Pattern Language for Distributed Computing. John Wiley and Sons,
2007

15. F.Buschmann, K. Henney, D.C. Schmidt, Pattern-Oriented Software Architecture
Volume 5: On Patterns and Pattern Languages. John Wiley and Sons, 2007

16. G. Ryle, The Concept of Mind. Harmondsworth, England, Penguin (1963). First
published 1949.

17. Schwaber, Ken and Beedle, Mike, Agile Software Development with SCRUM. Pren-
tice Hall, Upper Saddle River, NJ, 2001

18. J. Siddle, Using Patterns to Create a Service-Oriented Component Mid-
dleware, VikingPLoP, 2006. http://jms-home.mysite.orange.co.uk/docs/

patternspaper.pdf

19. M. Voelter, M. Kircher, U. Zdun , Remoting Patterns : Foundations of Enterprise,
Internet and Realtime Distributed Object Middleware. John Wiley and Sons, 2005.

c©James Siddle and Maisie Platts, 2009



7. CONCLUSIONS
An Example of Retrospective Patterns-Based Documentation

Appendix: Pattern Selection Pool

Table 2 presents the patterns that were considered for inclusion in the docu-
mentation, along with selection criteria analysis performed after documentation
creation.

Pattern Sig. Exp. Imp. Retr.

Layers 1 X

Wrapper Facade 1 X

Component Configurator 1 X

Broker 1 X

Executor 1 X

Explicit Interface 1 X

Encapsulated Context Object 1 X

Decoupled Context Interface 1 X

Proxy 1 X

Invoker 1 X

Lookup 1 X

Client-Server 1 X

Interceptor 2 X

Lazy Aquizition 2 X

Pooling 2 X

Caching 2 X

Asynchronous Completion Token 2 X

Observer 3 X

Template Method 3 X

Singleton 3 X
Table 2. Patterns and selection criteria

The patterns in the selection pool were categorized by:

– Architectural Significance (Sig.) a mark from one to three, indicating the
relative contribution the pattern was considered to have made to the archi-
tecture.

– Explicitly applied (Exp.) - patterns that were consciously chosen for appli-
cation during development.

– Implicitly Applied (Imp.) pattern that were not consciously applied, but
were thought to have been applied by developers because the design captured
by the pattern is well known; for example caching.

– Retrospectively Recognised (Retr.) indicates that the pattern was not con-
sciously applied, but was recognised in the software system in retrospect.

c©James Siddle and Maisie Platts, 2009



An Example of Retrospective Patterns-Based Documentation

7. CONCLUSIONS

Appendix: Documentation Differences

The differences between the real system and the system as presented are de-
scribed below.

Implementation differences

The Wrapper Facade classes shown at step 2 represent the intended rather
achieved level of platform independence. Classes emerged over the course of
the project, requiring (but not always receiving) rework to ensure architecture
conformance. The Thread implementation was more complex than shown, and
included classes that were closely coupled with service execution infrastructure
rather than being general purpose Wrapper Facades.

The collaboration between Broker and Component Configurator classes
at step 4 was not taken explicitly on the project; services actually created their
own channels for communication until Executor was applied. This is shown as
a separate step because it is useful for understanding the software system, i.e.
that each service is associated with a communication channel.

The initial implementation of Executor was simpler than that described at
step 5. The threading policy was actually introduced later when it was needed.

Proxy objects in the real system were actually associated with their own
unique communication channel and shared between services because of concerns
over excessive numbers of Proxy objects being created. In hindsight, it was
considered better that all messages associated with a particular service should
flow over one communication channel, and that the risk of excessive memory
consumption from large numbers of proxies was low. As such, the system de-
sign was revised in the documentation to associate Proxy objects with service
communication channels.

The inheritance hierarchy around Components, Proxy, and ExplicitInterface
classes has been simplified. Certain areas of the real software system had a com-
plex and difficult to understand class hierarchy, with some unnecessary relation-
ships which caused implementation challenges.

The Interceptor shown has been simplified from the actual implementa-
tion; on the originating project, the interception point was actually within the
misplaced threading wrapper mentioned above.

Some name changes were made - for example ExplicitInterface was ret-
rospectively renamed from Service in the real system.

Ordering differences

Component Configurator and Broker were applied concurrently and in-
dependently, they are presented in order because the extra step introduced by
separating the patterns allows for a cleaner presentation.

Additionally, the ordering of steps 6-10 of the documentation has been intro-
duced retrospectively - the patterns shown at these steps were applied in a much
more disorderly way compared to the rest of the patterns, which were applied
in the order presented (except for the two patterns mentioned in the previous
point which were applied simultaneously).

c©James Siddle and Maisie Platts, 2009


